EL
Elizabeth Lawrence
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
10
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
12

CLASPs stabilize the intermediate state between microtubule growth and catastrophe

Elizabeth Lawrence et al.Dec 4, 2022
M
S
S
E
ABSTRACT CLASPs regulate microtubules in many fundamental cellular processes. CLASPs stabilize dynamic microtubules by suppressing catastrophe and promoting rescue, the switch-like transitions between microtubule growth and shrinkage. However, the molecular mechanisms underlying CLASP’s activity are not understood. Here, we investigate the effects of CLASPs on distinct microtubule substrates in the absence of tubulin to gain insight into how CLASPs regulate microtubule dynamics. Surprisingly, we find that human CLASP1 depolymerizes stable microtubules in the presence of GTP, but not in the absence of nucleotide. Conversely, CLASP1 stabilizes dynamic microtubules upon tubulin dilution in the presence of GTP. Our results demonstrate that CLASP1 drives microtubule substrates with different inherent stabilities into the same slowly-depolymerizing state in the absence of tubulin in a nucleotide-dependent manner. We interpret this state as the pre-catastrophe intermediate state between microtubule growth and shrinkage. Thus, we conclude that CLASPs stabilize the intermediate state between microtubule growth and shrinkage to suppress microtubule catastrophe and promote rescue.
12
Citation7
0
Save
0

Quantification of Microtubule Stutters: Dynamic Instability Behaviors that are Strongly Associated with Catastrophe

Shant Mahserejian et al.Dec 17, 2019
+8
A
J
S
ABSTRACT Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting dynamic instability mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present a S tatistical T ool for A utomated D ynamic I nstability A nalysis (STADIA), which identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term ‘stutters.’ During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our dimer-scale MT simulations and in vitro experiments, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anti-catastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared to previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins.
0
Citation2
0
Save
24

SSNA1 stabilizes dynamic microtubules and detects microtubule damage

Elizabeth Lawrence et al.Feb 6, 2021
M
G
C
E
ABSTRACT Sjögren’s Syndrome Nuclear Autoantigen 1 (SSNA1/NA14) is a microtubule-associated protein with important functions in cilia, dividing cells and developing neurons. However, the direct effects of SSNA1 on microtubules are not known. We employed in vitro reconstitution with purified proteins and TIRF microscopy to investigate the activity of human SSNA1 on dynamic microtubule ends and lattices. We find that SSNA1 modulates all parameters of microtubule dynamic instability – slowing down the rates of growth, shrinkage and catastrophe, and promoting rescue. SSNA1 accumulation on dynamic microtubule ends correlates with the growth rate slow-down. Furthermore, SSNA1 prevents catastrophe when soluble tubulin is removed or sequestered by Op18/Stathmin. Finally, SSNA1 detects spastin-induced damage and inhibits spastin’s severing activity. Therefore, SSNA1 is both a potent microtubule stabilizing protein and a sensor of microtubule damage; activities that likely underlie SSNA1’s cellular functions.
24
Citation1
0
Save
1

CLASP2 facilitates dynamic actin filament organization along the microtubule lattice

Nicole Rodgers et al.Sep 23, 2022
+6
A
E
N
ABSTRACT Coordination between the microtubule and actin networks is essential for cell motility, neuronal growth cone guidance, and wound healing. Members of the CLASP (Cytoplasmic Linker-Associated Protein) family of proteins have been implicated in the cytoskeletal crosstalk between microtubules and actin networks, however, the molecular mechanisms underlying CLASPs role in cytoskeletal coordination are unclear. Here, we investigate CLASP2α’s crosslinking function with microtubules and F-actin. Our results demonstrate that CLASP2α crosslinks F-actin to the microtubule lattice in vitro. We find that the crosslinking ability is retained by L-TOG2-S, a minimal construct containing the TOG2 domain and serine-arginine rich region of CLASP2α. Furthermore, CLASP2α promotes the accumulation of multiple actin filaments along the microtubule, supporting up to 11 F-actin landing events on a single microtubule lattice region. CLASP2α also facilitates dynamic organization of polymerizing actin filaments templated by the microtubule network, with F-actin forming bridges between individual microtubules. Finally, we find that depletion of CLASPs in vascular smooth muscle cells results in disorganized actin fibers and reduced co-alignment of actin fibers with microtubules, suggesting that CLASP and microtubules contribute to higher-order actin structures. Taken together, our results indicate that CLASP2α can directly crosslink F-actin to microtubules, and that this microtubule-CLASP-actin interaction may influence overall cytoskeletal organization in cells.