RP
Ramin Parsey
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2,214
h-index:
59
/
i10-index:
170
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration

Arno Klein et al.Jan 14, 2009
+16
B
J
A
All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms (“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets. Updates will be published on the http://www.mindboggle.info/papers/ website.
0

Guidelines for the content and format of PET brain data in publications and archives: A consensus paper

Gitte Knudsen et al.Feb 16, 2020
+41
S
M
G
It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.
0

Harmonization of cortical thickness measurements across scanners and sites

Jean‐Philippe Fortin et al.Jun 10, 2017
+12
P
Y
J
Abstract With the proliferation of multi-site neuroimaging studies, there is a greater need for handling non-biological variance introduced by differences in MRI scanners and acquisition protocols. Such unwanted sources of variation, which we refer to as “scanner effects”, can hinder the detection of imaging features associated with clinical covariates of interest and cause spurious findings. In this paper, we investigate scanner effects in two large multi-site studies on cortical thickness measurements, across a total of 11 scanners. We propose a set of general tools for visualizing and identifying scanner effects that are generalizable to other modalities. We then propose to use ComBat, a technique adopted from the genomics literature and recently applied to diffusion tensor imaging data, to combine and harmonize cortical thickness values across scanners. We show that ComBat removes unwanted sources of scan variability while simultaneously increasing the power and reproducibility of subsequent statistical analyses. We also show that ComBat is useful for combining imaging data with the goal of studying life-span trajectories in the brain.