CW
Carsten Werner
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
2
h-index:
21
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Instructive starPEG-Heparin biohybrid 3D cultures for modeling human neural stem cell plasticity, neurogenesis, and neurodegeneration

Christos Papadimitriou et al.Nov 27, 2017
Three-dimensional models of human neural development and neurodegeneration are crucial when exploring stem-cell-based regenerative therapies in a tissue-mimetic manner. However, existing 3D culture systems are not sufficient to model the inherent plasticity of NSCs due to their ill-defined composition and lack of controllability of the physical properties. Adapting a glycosaminoglycan-based, cell-responsive hydrogel platform, we stimulated primary and induced human neural stem cells (NSCs) to manifest neurogenic plasticity and form extensive neuronal networks in vitro. The 3D cultures exhibited neurotransmitter responsiveness, electrophysiological activity, and tissue-specific extracellular matrix (ECM) deposition. By whole transcriptome sequencing, we identified that 3D cultures express mature neuronal markers, and reflect the in vivo make-up of mature cortical neurons compared to 2D cultures. Thus, our data suggest that our established 3D hydrogel culture supports the tissue-mimetic maturation of human neurons. We also exemplarily modeled neurodegenerative conditions by treating the cultures with Aβ42 peptide and observed the known human pathological effects of Alzheimer's disease including reduced NSC proliferation, impaired neuronal network formation, synaptic loss and failure in ECM deposition as well as elevated Tau hyperphosphorylation and formation of neurofibrillary tangles. We determined the changes in transcriptomes of primary and induced NSC-derived neurons after Aβ42, providing a useful resource for further studies. Thus, our hydrogel-based human cortical 3D cell culture is a powerful platform for studying various aspects of neural development and neurodegeneration, as exemplified for Aβ42 toxicity and neurogenic stem cell plasticity.
0

3D microenvironment stiffness regulates tumor spheroid growth and mechanics via p21 and ROCK

Anna Taubenberger et al.Mar 23, 2019
Mechanical properties of cancer cells and their microenvironment contribute to breast cancer progression. While mechanosensing has been extensively studied using two-dimensional (2D) substrates, much less is known about it in a physiologically more relevant 3D context. Here we demonstrate that breast cancer tumor spheroids, growing in 3D polyethylene glycol-heparin hydrogels, are sensitive to their environment stiffness. During tumor spheroid growth, compressive stresses of up to 2 kPa built up, as quantitated using elastic polymer beads as stress sensors. Atomic force microscopy (AFM) revealed that tumor spheroid stiffness increased with hydrogel stiffness. Also, constituent cell stiffness increased in a ROCK- and F-actin-dependent manner. Increased hydrogel stiffness correlated with attenuated tumor spheroid growth, a higher proportion of cells in G0/G1 phase and elevated levels of the cyclin-dependent kinase inhibitor p21. Drug-mediated ROCK inhibition reversed not only cell stiffening upon culture in stiff hydrogels but also increased tumor spheroid growth. Taken together, we reveal here a mechanism by which the growth of a tumor spheroid can be regulated via cytoskeleton rearrangements in response to its mechanoenvironment. Thus, our findings contribute to a better understanding of how cancer cells react to compressive stress when growing under confinement in stiff environments and provide the basis for a more in-depth exploration of the underlying mechanosensory response.
0

Standardized microgel beads as elastic cell mechanical probes

Salvatore Girardo et al.Mar 28, 2018
Cell mechanical measurements are gaining increasing interest in biological and biomedical studies. However, there are no standardized calibration particles available that permit the cross-comparison of different measurement techniques operating at different stresses and time-scales. Here we present the rational design, production, and comprehensive characterization of poly-acylamide (PAAm) microgel beads mimicking biological cells. We produced mono-disperse beads at rates of 20 - 60 kHz by means of a microfluidic droplet generator, where the pre-gel composition was adjusted to tune the beads' elasticity in the range of cell and tissue relevant mechanical properties. We verified bead homogeneity by optical diffraction tomography and Brillouin microscopy. Consistent elastic behavior of microgel beads at different shear rates was confirmed by AFM-enabled nanoindentation and real-time deformability cytometry (RT-DC). The remaining inherent variability in elastic modulus was rationalized using polymer theory and effectively reduced by sorting based on forward-scattering using conventional flow cytometry. Our results show that PAAm microgel beads can be standardized as mechanical probes, to serve not only for validation and calibration of cell mechanical measurements, but also as cell-scale stress sensors.