KC
Kesinee Chotivanich
Author with expertise in Malaria
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
8,260
h-index:
54
/
i10-index:
124
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic architecture of artemisinin-resistant Plasmodium falciparum

Olivo Miotto et al.Jan 19, 2015
Dominic Kwiatkowski and colleagues report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin. They identify markers of a genetic background on which kelch13 mutations conferring artemisinin resistance are likely to emerge. We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.
0
Citation555
0
Save
0

A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

Alassane Mbengue et al.Apr 1, 2015
Artemisinins are key anti-malarial drugs, but artemisinin resistance has been increasing; this study identifies the molecular target of artemisinins as phosphatidylinositol-3-kinase and increase of the lipid product phosphatidylinositol-3-phosphate induces resistance in Plasmodium falciparum. The emergence of artemisinin resistance is a major threat to world-wide malaria treatment and control and although artemisinins have been linked with a variety of cellular factors, there has been no consensus on the relevant biochemical targets or mechanisms underpinning resistance. Here Kasturi Haldar and colleagues show that artemisinins target the parasite phosphatidylinositol-3-kinase (PfPI3K) to inhibit the production of phosphatidylinositol 3-phosphate (PI3P). Mutation in PfKelch13, a previously identified resistance marker, increases levels of PfPI3K in both clinically derived strains and in engineered laboratory parasites. This work points to PfPI3K as the key mediator of artemisinin resistance and a target for malaria elimination. Artemisinins are the cornerstone of anti-malarial drugs1. Emergence and spread of resistance to them2,3,4 raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance5,6,7,8,9,10. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.
0
Citation550
0
Save
0

Estimation of the Total Parasite Biomass in Acute Falciparum Malaria from Plasma PfHRP2

Arjen Dondorp et al.Aug 16, 2005
Background In falciparum malaria sequestration of erythrocytes containing mature forms of Plasmodium falciparum in the microvasculature of vital organs is central to pathology, but quantitation of this hidden sequestered parasite load in vivo has not previously been possible. The peripheral blood parasite count measures only the circulating, relatively non-pathogenic parasite numbers. P. falciparum releases a specific histidine-rich protein (PfHRP2) into plasma. Quantitative measurement of plasma PfHRP2 concentrations may reflect the total parasite biomass in falciparum malaria. Methods and Findings We measured plasma concentrations of PfHRP2, using a quantitative antigen-capture enzyme-linked immunosorbent assay, in 337 adult patients with falciparum malaria of varying severity hospitalised on the Thai–Burmese border. Based on in vitro production rates, we constructed a model to link this measure to the total parasite burden in the patient. The estimated geometric mean parasite burden was 7 × 1011 (95% confidence interval [CI] 5.8 × 1011 to 8.5 × 1011) parasites per body, and was over six times higher in severe malaria (geometric mean 1.7 × 1012, 95% CI 1.3 × 1012 to 2.3 × 1012) than in patients hospitalised without signs of severity (geometric mean 2.8 × 1011, 95% CI 2.3 × 1011 to 3.5 × 1011; p < 0.001). Parasite burden was highest in patients who died (geometric mean 3.4 × 1012, 95% CI 1.9 × 1012 to 6.3 × 1012; p = 0.03). The calculated number of sequestered parasites increased with disease severity and was higher in patients with late developmental stages of P. falciparum present on peripheral blood smears. Comparing model and laboratory estimates of the time of sequestration suggested that admission to hospital with uncomplicated malaria often follows schizogony—but in severe malaria is unrelated to stage of parasite development. Conclusion Plasma PfHRP2 concentrations may be used to estimate the total body parasite biomass in acute falciparum malaria. Severe malaria results from extensive sequestration of parasitised erythrocytes.
0
Citation431
0
Save
0

Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study

Rob Pluijm et al.Jul 22, 2019

Summary

Background

 The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015–18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam. The immediate public health importance of our findings prompted us to report the efficacy data on dihydroartemisinin-piperaquine and its determinants ahead of the results of the overall trial, which will be published later this year. 

Methods

 Patients aged between 2 and 65 years presenting with uncomplicated P falciparum or mixed species malaria at seven sites in Thailand, Cambodia, and Vietnam were randomly assigned to receive dihydroartemisinin-piperaquine with or without mefloquine, as part of the TRACII trial. The primary outcome was the PCR-corrected efficacy at day 42. Next-generation sequencing was used to assess the prevalence of molecular markers associated with artemisinin resistance (kelch13 mutations, in particular Cys580Tyr) and piperaquine resistance (plasmepsin-2 and plasmepsin-3 amplifications and crt mutations). This study is registered with ClinicalTrials.gov, number NCT02453308. 

Findings

 Between Sept 28, 2015, and Jan 18, 2018, 539 patients with acute P falciparum malaria were screened for eligibility, 292 were enrolled, and 140 received dihydroartemisinin-piperaquine. The overall Kaplan-Meier estimate of PCR-corrected efficacy of dihydroartemisinin-piperaquine at day 42 was 50·0% (95% CI 41·1–58·3). PCR-corrected efficacies for individual sites were 12·7% (2·2–33·0) in northeastern Thailand, 38·2% (15·9–60·5) in western Cambodia, 73·4% (57·0–84·3) in Ratanakiri (northeastern Cambodia), and 47·1% (33·5–59·6) in Binh Phuoc (southwestern Vietnam). Treatment failure was associated independently with plasmepsin2/3 amplification status and four mutations in the crt gene (Thr93Ser, His97Tyr, Phe145Ile, and Ile218Phe). Compared with the results of our previous TRACI trial in 2011–13, the prevalence of molecular markers of artemisinin resistance (kelch13 Cys580Tyr mutations) and piperaquine resistance (plasmepsin2/3 amplifications and crt mutations) has increased substantially in the Greater Mekong subregion in the past decade. 

Interpretation

 Dihydroartemisinin-piperaquine is not treating malaria effectively across the eastern Greater Mekong subregion. A highly drug-resistant P falciparum co-lineage is evolving, acquiring new resistance mechanisms, and spreading. Accelerated elimination of P falciparum malaria in this region is needed urgently, to prevent further spread and avoid a potential global health emergency. 

Funding

 UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and National Institutes of Health.
0

Targeting the Cell Stress Response of Plasmodium falciparum to Overcome Artemisinin Resistance

Con Dogovski et al.Apr 22, 2015
Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.
0
Citation299
0
Save
Load More