AC
Adam Chekroud
Author with expertise in Network Analysis of Psychopathology and Mental Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
2,356
h-index:
23
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Association between physical exercise and mental health in 1·2 million individuals in the USA between 2011 and 2015: a cross-sectional study

Sammi Chekroud et al.Aug 8, 2018
Background Exercise is known to be associated with reduced risk of all-cause mortality, cardiovascular disease, stroke, and diabetes, but its association with mental health remains unclear. We aimed to examine the association between exercise and mental health burden in a large sample, and to better understand the influence of exercise type, frequency, duration, and intensity. Methods In this cross-sectional study, we analysed data from 1 237 194 people aged 18 years or older in the USA from the 2011, 2013, and 2015 Centers for Disease Control and Prevention Behavioral Risk Factors Surveillance System survey. We compared the number of days of bad self-reported mental health between individuals who exercised and those who did not, using an exact non-parametric matching procedure to balance the two groups in terms of age, race, gender, marital status, income, education level, body-mass index category, self-reported physical health, and previous diagnosis of depression. We examined the effects of exercise type, duration, frequency, and intensity using regression methods adjusted for potential confounders, and did multiple sensitivity analyses. Findings Individuals who exercised had 1·49 (43·2%) fewer days of poor mental health in the past month than individuals who did not exercise but were otherwise matched for several physical and sociodemographic characteristics (W=7·42 × 1010, p<2·2 × 10−16). All exercise types were associated with a lower mental health burden (minimum reduction of 11·8% and maximum reduction of 22·3%) than not exercising (p<2·2 × 10−16 for all exercise types). The largest associations were seen for popular team sports (22·3% lower), cycling (21·6% lower), and aerobic and gym activities (20·1% lower), as well as durations of 45 min and frequencies of three to five times per week. Interpretation In a large US sample, physical exercise was significantly and meaningfully associated with self-reported mental health burden in the past month. More exercise was not always better. Differences as a function of exercise were large relative to other demographic variables such as education and income. Specific types, durations, and frequencies of exercise might be more effective clinical targets than others for reducing mental health burden, and merit interventional study. Funding Cloud computing resources were provided by Microsoft.
0
Citation850
0
Save
0

Cross-trial prediction of treatment outcome in depression: a machine learning approach

Adam Chekroud et al.Jan 21, 2016
Background Antidepressant treatment efficacy is low, but might be improved by matching patients to interventions. At present, clinicians have no empirically validated mechanisms to assess whether a patient with depression will respond to a specific antidepressant. We aimed to develop an algorithm to assess whether patients will achieve symptomatic remission from a 12-week course of citalopram. Methods We used patient-reported data from patients with depression (n=4041, with 1949 completers) from level 1 of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D; ClinicalTrials.gov, number NCT00021528) to identify variables that were most predictive of treatment outcome, and used these variables to train a machine-learning model to predict clinical remission. We externally validated the model in the escitalopram treatment group (n=151) of an independent clinical trial (Combining Medications to Enhance Depression Outcomes [COMED]; ClinicalTrials.gov, number NCT00590863). Findings We identified 25 variables that were most predictive of treatment outcome from 164 patient-reportable variables, and used these to train the model. The model was internally cross-validated, and predicted outcomes in the STAR*D cohort with accuracy significantly above chance (64·6% [SD 3·2]; p<0·0001). The model was externally validated in the escitalopram treatment group (N=151) of COMED (accuracy 59·6%, p=0.043). The model also performed significantly above chance in a combined escitalopram-buproprion treatment group in COMED (n=134; accuracy 59·7%, p=0·023), but not in a combined venlafaxine-mirtazapine group (n=140; accuracy 51·4%, p=0·53), suggesting specificity of the model to underlying mechanisms. Interpretation Building statistical models by mining existing clinical trial data can enable prospective identification of patients who are likely to respond to a specific antidepressant. Funding Yale University.
0

The promise of machine learning in predicting treatment outcomes in psychiatry

Adam Chekroud et al.May 18, 2021
For many years, psychiatrists have tried to understand factors involved in response to medications or psychotherapies, in order to personalize their treatment choices. There is now a broad and growing interest in the idea that we can develop models to personalize treatment decisions using new statistical approaches from the field of machine learning and applying them to larger volumes of data. In this pursuit, there has been a paradigm shift away from experimental studies to confirm or refute specific hypotheses towards a focus on the overall explanatory power of a predictive model when tested on new, unseen datasets. In this paper, we review key studies using machine learning to predict treatment outcomes in psychiatry, ranging from medications and psychotherapies to digital interventions and neurobiological treatments. Next, we focus on some new sources of data that are being used for the development of predictive models based on machine learning, such as electronic health records, smartphone and social media data, and on the potential utility of data from genetics, electrophysiology, neuroimaging and cognitive testing. Finally, we discuss how far the field has come towards implementing prediction tools in real-world clinical practice. Relatively few retrospective studies to-date include appropriate external validation procedures, and there are even fewer prospective studies testing the clinical feasibility and effectiveness of predictive models. Applications of machine learning in psychiatry face some of the same ethical challenges posed by these techniques in other areas of medicine or computer science, which we discuss here. In short, machine learning is a nascent but important approach to improve the effectiveness of mental health care, and several prospective clinical studies suggest that it may be working already.
0
Citation297
0
Save
0

Reevaluating the Efficacy and Predictability of Antidepressant Treatments

Adam Chekroud et al.Feb 27, 2017
Depressive severity is typically measured according to total scores on questionnaires that include a diverse range of symptoms despite convincing evidence that depression is not a unitary construct. When evaluated according to aggregate measurements, treatment efficacy is generally modest and differences in efficacy between antidepressant therapies are small.To determine the efficacy of antidepressant treatments on empirically defined groups of symptoms and examine the replicability of these groups.Patient-reported data on patients with depression from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial (n = 4039) were used to identify clusters of symptoms in a depressive symptom checklist. The findings were then replicated using the Combining Medications to Enhance Depression Outcomes (CO-MED) trial (n = 640). Mixed-effects regression analysis was then performed to determine whether observed symptom clusters have differential response trajectories using intent-to-treat data from both trials (n = 4706) along with 7 additional placebo and active-comparator phase 3 trials of duloxetine (n = 2515). Finally, outcomes for each cluster were estimated separately using machine-learning approaches. The study was conducted from October 28, 2014, to May 19, 2016.Twelve items from the self-reported Quick Inventory of Depressive Symptomatology (QIDS-SR) scale and 14 items from the clinician-rated Hamilton Depression (HAM-D) rating scale. Higher scores on the measures indicate greater severity of the symptoms.Of the 4706 patients included in the first analysis, 1722 (36.6%) were male; mean (SD) age was 41.2 (13.3) years. Of the 2515 patients included in the second analysis, 855 (34.0%) were male; mean age was 42.65 (12.17) years. Three symptom clusters in the QIDS-SR scale were identified at baseline in STAR*D. This 3-cluster solution was replicated in CO-MED and was similar for the HAM-D scale. Antidepressants in general (8 of 9 treatments) were more effective for core emotional symptoms than for sleep or atypical symptoms. Differences in efficacy between drugs were often greater than the difference in efficacy between treatments and placebo. For example, high-dose duloxetine outperformed escitalopram in treating core emotional symptoms (effect size, 2.3 HAM-D points during 8 weeks, 95% CI, 1.6 to 3.1; P < .001), but escitalopram was not significantly different from placebo (effect size, 0.03 HAM-D points; 95% CI, -0.7 to 0.8; P = .94).Two common checklists used to measure depressive severity can produce statistically reliable clusters of symptoms. These clusters differ in their responsiveness to treatment both within and across different antidepressant medications. Selecting the best drug for a given cluster may have a bigger benefit than that gained by use of an active compound vs a placebo.
0

Differences in words used to describe racial and gender groups in Medical Student Performance Evaluations

David Ross et al.Aug 9, 2017
The transition from medical school to residency is a critical step in the careers of physicians. Because of the standardized application process-wherein schools submit summative Medical Student Performance Evaluations (MSPE's)-it also represents a unique opportunity to assess the possible prevalence of racial and gender disparities, as shown elsewhere in medicine.The authors conducted textual analysis of MSPE's from 6,000 US students applying to 16 residency programs at a single institution in 2014-15. They used custom software to extract demographic data and keyword frequency from each MSPE. The main outcome measure was the proportion of applicants described using 24 pre-determined words from four thematic categories ("standout traits", "ability", "grindstone habits", and "compassion").The data showed significant differences based on race and gender. White applicants were more likely to be described using "standout" or "ability" keywords (including "exceptional", "best", and "outstanding") while Black applicants were more likely to be described as "competent". These differences remained significant after controlling for United States Medical Licensing Examination Step 1 scores. Female applicants were more frequently described as "caring", "compassionate", and "empathic" or "empathetic". Women were also more frequently described as "bright" and "organized".While the MSPE is intended to reflect an objective, summative assessment of students' qualifications, these data demonstrate for the first time systematic differences in how candidates are described based on racial/ethnic and gender group membership. Recognizing possible implicit biases and their potential impact is important for faculty who strive to create a more egalitarian medical community.
0
Paper
Citation218
0
Save
0

Convergent molecular, cellular, and neural signatures of major depressive disorder

Kevin Anderson et al.Feb 11, 2020
Major depressive disorder emerges from the complex interactions of biological systems that span across genes and molecules through cells, circuits, networks, and behavior. Establishing how neurobiological processes coalesce to contribute to the onset and maintenance of depression requires a multi-scale approach, encompassing measures of brain structure and function as well as genetic and cell-specific genomic data. Here, we examined anatomical (cortical thickness) and functional (functional variability, global brain connectivity) correlates of depression and negative affect across three population-imaging datasets: UK Biobank, Genome Superstruct Project, and ENIGMA (combined N≥23,723). Integrative analyses incorporated measures of cortical gene expression, post-mortem patient transcriptional data, depression GWAS, and single-cell transcription. Neuroimaging correlates of depression and negative affect were consistent across the three independent datasets. Linking ex-vivo gene downregulation with in-vivo neuroimaging, we found that genomic correlates of depression-linked neuroimaging phenotypes tracked gene downregulation in post-mortem cortical tissue samples of patients with depression. Integrated analysis of single-cell and Allen Human Brain Atlas expression data implicated somatostatin interneurons and astrocytes as consistent cell associates of depression, through both in-vivo imaging and ex-vivo cortical gene dysregulation. Providing converging evidence for these observations, GWAS derived polygenic risk for depression was enriched for genes expressed in interneurons, but not glia. Underscoring the translational potential of multi-scale approaches, the genomic correlates of depression-linked brain function and structure were enriched for known and novel disorder relevant molecular pathways. These findings bridge across levels to connect specific genes, cell classes, and biological pathways to in-vivo imaging correlates of depression.