GL
Guodao Liu
Author with expertise in Technologies for Biofuel Production from Biomass
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
236
h-index:
19
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Differential responses of antioxidants and dehydrin expression in two switchgrass (Panicum virgatum) cultivars contrasting in drought tolerance

Yiming Liu et al.Dec 3, 2018
Drought stress is a major limiting factor for plant growth and development in many regions of the world. This study was designed to investigate antioxidant metabolism and dehydrin expression responses to drought stress in two switchgrass cultivars (drought tolerant Alamo, and drought sensitive Dacotah) contrasting in drought tolerance. The plants were subjected to well-watered [100% evapotranspiration (ET)] or drought stress (30%-50% ET) conditions for up to 24 d in growth chambers. Drought stress decreased leaf relative water content (RWC), increased leaf electrolyte leakage (EL), leaf malondialdehyde (MDA) content in two cultivars, but Alamo exhibited higher leaf RWC level, lower leaf EL and MDA when compared to Dacotah at 24 d of drought treatment. Drought stress also increased superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in two cultivars, Alamo had relatively higher SOD, CAT and APX activities and greater abundance of SOD and APX isozymes than Dacotah at 24 d of drought treatment. Alamo had higher abundance of 55 KDa and 18 KDa dehydrin accumulation than Dacotah under drought treatment. Relative genes expression level of PvCAT1, PvAPX2, PvERD and PvPIP1;5 in Alamo were significantly higher than Dacotah at 24 d of drought treatment. These results suggest that increase in antioxidant enzymes and accumulation of dehydrin were highly related with switchgrass drought tolerance. Antioxidant enzyme activity, isozyme expression and dehydrin abundance could provide a useful screening tool to identify relative drought tolerance in switchgrass cultivars.
0

Chromosome-Scale Genome Assembly Provides Insights into Speciation of Allotetraploid and Massive Biomass Accumulation of Elephant Grass (Pennisetum purpureum Schum.)

Shengkui Zhang et al.Mar 2, 2020
Elephant grass (Pennisetum purpureum Schum., A'A'BB, 2n=4x=28), which is characterized as robust growth and high biomass, and widely distributed in tropical and subtropical areas globally, is an important forage, biofuels and industrial plant. We sequenced its allopolyploid genome and assembled 2.07 Gb (96.88%) into A' and B sub-genomes of 14 chromosomes with scaffold N50 of 8.47 Mb. A total of 38,453 and 36,981 genes were annotated in A' and B sub-genomes, respectively. A phylogenetic analysis with species in Pennisetum identified that the speciation of the allotetraploid occurred approximately 15 MYA after the divergence between S.italica and P. glaucum. Double whole-genome duplication (WGD) and polyploidization events resulted in large scale gene expansion, especially in the key steps of growth and biomass accumulation. Integrated transcriptome profiling revealed the functional differentiation between sub-genomes; A' sub-genome contributed more to plant growth, development and photosynthesis whereas B sub-genome primarily offered functions of effective transportation and resistance to stimulation. The results uncovered enhanced cellulose and lignin biosynthesis pathways with 645 and 666 genes expanded in A' and B sub-genomes, respectively. Our findings provided deep insights into the speciation and genetic basis of fast growth and high biomass accumulation in the species. The genetic, genomic, and transcriptomic resources generated in this study will pave the way for further domestication and selection of these economical species and make them more adaptive to industrial utilization.
0

Comparative analysis of lipid and flavonoid biosynthesis between Pongamia and soybean seeds: genomic, transcriptional, and metabolic perspectives

Chun Liu et al.Jun 24, 2024
Abstract Background Soybean ( Glycine max ) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia ( Pongamia pinnata ), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species. Results The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4ʹ-trihydroxyisoflavanone 4ʹ-O-methyltransferases (HI4ʹOMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds. Conclusions This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.