FG
Fabrice Gallais
Author with expertise in Paper-Based Diagnostic Devices
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
13
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: a proof-of-concept focused on a 3 min mass spectrometry window

Duarte Gouveia et al.Jun 19, 2020
+8
F
G
D
Abstract Rapid but yet sensitive, specific and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostic that would not require specific reagents are worth to investigate not only for fighting the COVID-19 pandemic, but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. Simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.
10
Citation7
0
Save
0

Shotgun proteomics of SARS-CoV-2 infected cells and its application to the optimisation of whole viral particle antigen production for vaccines

Lucia Grenga et al.Apr 17, 2020
+17
O
F
L
Abstract Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and continues to spread quickly around the globe. Currently, no effective vaccine is available to prevent COVID-19 and an intense global development activity is in progress. In this context, the different technology platforms face several challenges resulting from the involvement of a new virus still not fully characterised. Finding of the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles is among them. Here, we describe the establishment of a workflow based on shotgun tandem mass spectrometry data to guide the optimisation of the conditions for viral amplification. In parallel, we analysed the dynamic of the host cell proteome following SARS-CoV-2 infection providing a global overview of biological processes modulated by the virus and that could be further explored to identify drug targets to address the pandemic.
0
Citation5
0
Save
1

Deep Mutational Engineering of broadly-neutralizing and picomolar affinity nanobodies to accommodate SARS-CoV-1 & 2 antigenic polymorphism

Adrien Laroche et al.Dec 9, 2021
+8
P
M
A
Abstract We report in this study the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 Receptor Binding Domains (RBD) and are highly neutralizing. We applied Deep Mutational Engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. These nanobodies appears as promising therapeutic candidates to fight SARS-CoV-2 infection.
1
Citation1
0
Save