GA
Gaia Andreoletti
Author with expertise in Targeted Protein Degradation in Biomedical Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
11
h-index:
16
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Transcriptional Switch Governing Fibroblast Plasticity Underlies Reversibility of Chronic Heart Disease

Michael Alexanian et al.Jul 22, 2020
Abstract In diseased organs, stress-activated signaling cascades alter chromatin, triggering broad shifts in transcription and cell state that exacerbate pathology. Fibroblast activation is a common stress response that worsens lung, liver, kidney and heart disease, yet its mechanistic basis remains poorly understood 1,2 . Pharmacologic inhibition of the BET family of transcriptional coactivators alleviates cardiac dysfunction and associated fibrosis, providing a tool to mechanistically interrogate maladaptive fibroblast states and modulate their plasticity as a potential therapeutic approach 3–8 . Here, we leverage dynamic single cell transcriptomic and epigenomic interrogation of heart tissue with and without BET inhibition to reveal a reversible transcriptional switch underlying stress-induced fibroblast activation. Transcriptomes of resident cardiac fibroblasts demonstrated robust and rapid toggling between the quiescent fibroblast and activated myofibroblast state in a manner that directly correlated with BET inhibitor exposure and cardiac function. Correlation of single cell chromatin accessibility with cardiac function revealed a novel set of reversibly accessible DNA elements that correlated with disease severity. Among the most dynamic elements was an enhancer regulating the transcription factor MEOX1, which was specifically expressed in activated myofibroblasts, occupied putative regulatory elements of a broad fibrotic gene program, and was required for TGFβ-induced myofibroblast activation. CRISPR interference of the most dynamic cis -element within the enhancer, marked by nascent transcription, prevented TGFβ-induced activation of Meox1 . These findings identify MEOX1 as a central regulator of stress-induced myofibroblast activation associated with cardiac dysfunction. The plasticity and specificity of the BET-dependent regulation of MEOX1 in endogenous tissue fibroblasts provides new trans - and cis - targets for treating fibrotic disease.
0
Citation6
0
Save
55
0

Critical assessment of missense variant effect predictors on disease-relevant variant data

Ruchir Rastogi et al.Jun 8, 2024
Abstract Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction. To explore a variety of settings that are relevant for different clinical and research applications, we assess performance within different subsets of the evaluation data and within high-specificity and high-sensitivity regimes. We find strong performance of many predictors across multiple settings. Meta-predictors tend to outperform their constituent individual predictors; however, several individual predictors have performance similar to that of commonly used meta-predictors. The relative performance of predictors differs in high-specificity and high-sensitivity regimes, suggesting that different methods may be best suited to different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare benign variants, and predictors supervised on pathogenicity labels from curated variant databases often learn label imbalances within genes. Overall, we find notable advances over the oldest and most cited missense variant effect predictors and continued improvements among the most recently developed tools, and the CAGI Annotate-All-Missense challenge (also termed the Missense Marathon) will continue to assess state-of-the-art methods as the field progresses. Together, our results help illuminate the current clinical and research utility of missense variant effect predictors and identify potential areas for future development.
0
Citation1
0
Save
8

Ethnicity-specific transcriptomic variation in immune cells and correlation with disease activity in systemic lupus erythematosus

Gaia Andreoletti et al.Nov 1, 2020
Abstract Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease in which outcomes vary among different racial groups. The aim of this study is to leverage large-scale transcriptomic data from diverse populations to better sub-classify SLE patients into more clinically actionable groups. We leverage cell sorted RNA-seq data (CD14 + monocytes, B cells, CD4 + T cells, and NK cells) from 120 SLE patients (63 Asian and 57 White individuals) and apply a four tier analytical approach to identify SLE subgroups within this multiethnic cohort: unsupervised clustering, differential expression analyses, gene co-expression analyses, and machine learning. K-means clustering on the individual cell type data resulted in three clusters for CD4 and CD14, and two clusters for B cells and NK cells. Correlation analysis revealed significant positive associations between the transcriptomic clusters of each immune cell and clinical parameters including disease activity and ethnicity. We then explored differentially expressed genes between Asian and White groups for each cell-type. The shared differentially expressed genes across the four cell types were involved in SLE or other autoimmune related pathways. Co-expression analysis identified similarly regulated genes across samples and grouped these genes into modules. Samples were grouped into White-high, Asians-high (high disease activity defined by SLEDAI score >=6) and White-low, Asians-low (SLEDAI < 6). Random forest classification of disease activity in the White and Asian cohorts showed the best classification in CD4 + T cells in White. The results from these analyses will help stratify patients based on their gene expression signatures to enable precision medicine for SLE.
0

Conserved epigenetic regulatory logic infers genes governing cell identity

Woo Shim et al.May 12, 2019
Determining genes orchestrating cell identity and function in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive tri-methylation of histone 3 lysine 27 as deposited in over 100 human cell states from representative tissues and cell lines. On its own, the tendency of broad H3K27me3 occupancy at promoters strongly enriches for genes that drive cell diversification and fates. We show that the discordance between this repressive tendency and the abundance of expressed transcripts of any somatic cell type prioritizes cell type-specific regulatory genes in health and disease. We implement this repression-based regulatory logic to identify genetic drivers of cell identity across millions of genome-wide single cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Its potential for novel gene discovery is demonstrated by experimentally validated predictions of previously unknown drivers of organ differentiation in two eukaryotic species, humans and Ciona . This simple and quantifiable regulatory inference analysis provides a novel and scalable computational approach to determine drivers of cell diversification and fates of any cell type from gene output alone.
0

BRD4 Interacts with GATA4 to Govern Mitochondrial Homeostasis in Adult Cardiomyocytes

Arun Padmanabhan et al.Apr 17, 2020
Gene regulatory networks control tissue plasticity during basal homeostasis and disease in a cell-type specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue-specificity of their function is achieved are poorly understood. BRD4, a member of the BET (Bromo- and Extra-Terminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease, and has been implicated as a pharmacologic target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. Here, we show that cardiomyocyte-specific deletion of BRD4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature enriched for decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes and preferentially co-localizes with GATA4, a lineage determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. Co-immunoprecipitation assays demonstrate that BRD4 and GATA4 form a complex in a bromodomain-independent manner, revealing a new interaction partner for BRD4 that has functional consequences for target transactivation and may allow for locus and tissue specificity. These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte specific gene program governing bioenergetic homeostasis in the adult heart.### Competing Interest StatementD.S. is scientific co-founder, shareholder and director of Tenaya Therapeutics. S.M.H. is an executive, officer, and shareholder of Amgen, Inc. and is a scientific co-founder and shareholder of Tenaya Therapeutics.
0

Functional Screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair

Juan Pérez-Bermejo et al.Nov 16, 2023
Abstract Homology Directed Repair (HDR) enables precise genome editing and holds great promise in the gene therapy field. However, the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes, such as Non-Homologous End Joining (NHEJ). In this study, we demonstrate the development of a functional, pooled screening platform utilizing an HDR-based readout to identify protein-based reagents that improve HDR outcomes in human hematopoietic stem and progenitor cells (HSPCs), a clinically relevant cell type for gene therapy. We leveraged this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target, 53BP1, and we identified optimized i53 variants that enable new intermolecular bonds and robustly increase HDR. These variants specifically reduce insertion-deletion outcomes and also synergize with a DNAPK inhibitor to increase HDR rates. When applied at manufacturing scale, the incorporation of improved variants results in a significant increase in cells with at least one repaired allele and improved HDR in long-term HSPCs subpopulations, while not increasing off-target editing or gross chromosomal rearrangements. We anticipate the pooled screening platform will enable discovery of future gene editing reagents that improve HDR outcomes, such as the i53 variants reported here.