Chromatin modifying enzymes are frequently mutated in cancer, resulting in a cascade of epigenetic deregulation. Recent reports indicate that inactivating mutations in the histone methyltransferase NSD1 define an intrinsic subtype of head and neck squamous cell carcinoma (HNSC) that features widespread DNA hypomethylation. Here, we describe a similar DNA hypomethylated subtype of lung squamous cell carcinoma (LUSC) that is enriched for both inactivating mutations and deletions in NSD1. The 'NSD1 subtypes' of HNSC and LUSC are highly correlated at the DNA methylation and gene expression levels, with concordant DNA hypomethylation and overexpression of a strongly overlapping set of genes, a subset of which are also hypomethylated in Sotos syndrome, a congenital growth disorder caused by germline NSD1 mutations. Further, the NSD1 subtype of HNSC displays an 'immune cold' phenotype characterized by low infiltration of tumor-associated leukocytes, particularly macrophages and CD8+ T cells, as well as low expression of genes encoding the immunotherapy target PD-1 immune checkpoint receptor and its ligands PD-L1 and PD-L2. Using an in vivo model, we demonstrate that NSD1 inactivation results in a reduction in the degree of T cell infiltration into the tumor microenvironment, implicating NSD1 as a tumor cell-intrinsic driver of an immune cold phenotype. These data have important implications for immunotherapy and reveal a general role of NSD1 in maintaining epigenetic repression.