HY
Haicen Yue
Author with expertise in Plant Signaling and Communication Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
7
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
43

PI3K inhibition reverses migratory direction of single cells but not cell groups in electric field

Francis Lin et al.Aug 6, 2020
ABSTRACT Motile cells migrate directionally in the electric field in a process known as galvanotaxis. Galvanotaxis is important in wound healing, development, cell division, and nerve growth. Different cell types migrate in opposite directions in electric fields, to either cathode, or anode, and the same cell can switch the directionality depending on chemical conditions. We previously reported that individual fish keratocyte cells sense electric fields and migrate to the cathode, while inhibition of PI3K reverses single cells to the anode. Many physiological processes rely on collective, not individual, cell migration, so here we report on directional migration of cohesive cell groups in electric fields. Uninhibited cell groups of any size move to the cathode, with speed decreasing and directionality increasing with the group size. Surprisingly, large groups of PI3K-inhibited cells move to the cathode, in the direction opposite to that of individual cells, which move to the anode, while such small groups are not persistently directional. In the large groups, cells’ velocities are distributed unevenly: the fastest cells are at the front of the uninhibited groups, but at the middle and rear of the PI3K-inhibited groups. Our results are most consistent with the hypothesis, supported by the computational model, that cells inside and at the edge of the groups interpret directional signals differently. Namely, cells in the group interior are directed to the cathode independently of their chemical state. Meanwhile, edge cells behave like the individual cells: they are directed to the cathode/anode in uninhibited/PI3K-inhibited groups, respectively. As a result, all cells drive uninhibited groups to the cathode, but a mechanical tug-of-war between the inner and edge cells directs large PI3K-inhibited groups with cell majority in the interior to the cathode, while rendering small groups non-directional. Significance statement Motile cells migrate directionally in electric fields. This behavior – galvanotaxis – is important in many physiological phenomena. Individual fish keratocytes migrate to the cathode, while inhibition of PI3K reverses single cells to the anode. Uninhibited cell groups move to the cathode. Surprisingly, large groups of PI3K-inhibited cells also move to the cathode, in the direction opposite to that of individual cells. The fastest cells are at the front of the uninhibited groups, but at the middle and rear of the PI3K-inhibited groups. We posit that inner and edge cells interpret directional signals differently, and that a tug-of-war between the edge and inner cells directs the cell groups. These results shed light on general principles of collective cell migration.
43
Citation6
0
Save
1

Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells

Yelena Bernadskaya et al.Feb 10, 2021
Abstract Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that these multicellular arrangements confer biochemical and biomechanical properties that contribute to tissue scale organization. The cardiopharyngeal progenitors of the tunicate Ciona provide the simplest possible model of collective cell migration. They form cohesive bilateral cell pairs, leader-trailer polarized along the migration path as they migrate between the ventral epidermis and trunk endoderm. Here, circumventing difficulties in quantifying cellular mechanics in live embryos, we use the Cellular Potts Model to computationally probe the distributions of forces consistent with the shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we first determine that cardiopharyngeal progenitors display hallmarks of supracellular organization, with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. Combined 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy that contributes to aligning collective polarity with the direction of migration, as observed with three or more cells both in silico and in vivo . Our approach reveals emerging properties of the migrating collective. Specifically, cell pairs are more persistent, thus migrating over longer distances, and presumably with higher accuracy. Finally, simulations suggest that polarized cell pairs literally join forces to deform the trunk endoderm, as they migrate through the extracellular space. We thus propose that the polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.
1
Citation1
0
Save
0

Galvanotactic directionality of cell groups depends on group size

Calina Copos et al.Aug 13, 2024
ABSTRACT Motile cells migrate directionally in the electric field in a process known as galvanotaxis, important and under-investigated phenomenon in wound healing and development. We previously reported that individual fish keratocyte cells migrate to the cathode in electric fields, that inhibition of PI3 kinase reverses single cells to the anode, and that large cohesive groups of either unperturbed or PI3K-inhibited cells migrate to the cathode. Here we find that small uninhibited cell groups move to the cathode, while small groups of PI3K-inhibited cells move to the anode. Small groups move faster than large groups, and groups of unperturbed cells move faster than PI3K-inhibited cell groups of comparable sizes. Shapes and sizes of large groups change little when they start migrating, while size and shapes of small groups change significantly, lamellipodia disappear from the rear edges of these groups, and their shapes start to resemble giant single cells. Our results are consistent with the computational model, according to which cells inside and at the edge of the groups pool their propulsive forces to move but interpret directional signals differently. Namely, cells in the group interior are directed to the cathode independently of their chemical state. Meanwhile, the edge cells behave like individual cells: they are directed to the cathode/anode in uninhibited/PI3K-inhibited groups, respectively. As a result, all cells drive uninhibited groups to the cathode, while larger PI3K-inhibited groups are directed by cell majority in the group interior to the cathode, while majority of the edge cells in small groups win the tug-of-war driving these groups to the anode. Significance statement Motile cells migrate directionally in electric fields. This behavior – galvanotaxis – is important in many physiological phenomena. Individual fish keratocytes migrate to the cathode, while inhibition of PI3K reverses single cells to the anode. Uninhibited cell groups move to the cathode. Surprisingly, groups of PI3K-inhibited cells exhibit bidirectional behavior: larger/smaller groups move to the cathode/anode, respectively. A mechanical model suggests that inner and outer cells interpret directional signals differently, and that a tug-of-war between the outer and inner cells directs the cell groups. These results shed light on general principles of collective cell migration.