EB
Emma Bourne
Author with expertise in Antibiotic Resistance in Aquatic Environments and Wastewater
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
16
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

Multi-omics phenotyping of the gut-liver axis allows health risk predictability from in vivo subchronic toxicity tests of a low-dose pesticide mixture

Robin Mesnage et al.Aug 26, 2020
Abstract Human health effects from chronic exposure to mixtures of pesticide residues are little investigated. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in an in vivo subchronic toxicity test of a mixture of six pesticide active ingredients frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole). Sprague-Dawley rats were administered with the pesticide mixture with each ingredient at its regulatory permitted acceptable daily intake. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little or no physiological effects from exposure to the pesticide mixture. In marked contrast, analysis of the host-gut microbiome axis using serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested the initiation of a cell danger response, including adaptation to oxidative stress. Only limited effects were detected on the caecum microbiota by shotgun metagenomics. Further analyses of in vitro bacterial cultures showed that growth of Lactobacillus rhamnosus and Escherichia coli strains was negatively impacted by the pesticide mixture at concentrations that were not inhibitory when exposure was to a single agent. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included those involved in the regulation of response to hormones and correlated with previously reported transcriptome changes following administration of nicotinamide. Genome-wide DNA methylation analysis of the same liver samples showed that 4255 CpG sites were differentially methylated (> 10% difference). Overall, we demonstrated that unlike standard blood biochemical and organ histological analysis, in-depth molecular profiling using a combination of high-throughput ‘-omics’ methods in laboratory animals exposed to low concentrations of pesticides reveals metabolic effects on the gut-liver axis, which can potentially be used as biomarkers for the prediction of future negative health outcomes. Our data suggest that adoption of multi-omics as part of regulatory risk assessment procedures will result in more accurate outcome measures, with positive public health implications.
30
Citation6
0
Save
40

Comparative toxicogenomics of glyphosate and Roundup herbicides by mammalian stem cell-based genotoxicity assays and molecular profiling in Sprague-Dawley rats

Robin Mesnage et al.Apr 13, 2021
Abstract Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remains controversial. As GBHs are more cytotoxic that glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo . First, glyphosate was compared with representative GBHs namely MON 52276 (EU), MON 76473 (UK) and MON 76207 (USA) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (both at 0.5, 50, 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased mir-30 while miR-10 levels were increased. DNA methylation profiling of liver revealed 5,727 and 4,496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate.
40
Citation6
0
Save
3

Glyphosate and its formulations Roundup Bioflow and RangerPro alter bacterial and fungal community composition in the rat caecum microbiome

Robin Mesnage et al.Nov 19, 2021
Abstract The potential health consequences of glyphosate-induced gut microbiome alterations have become a matter of intense debate. As part of a multifaceted study investigating toxicity, carcinogenicity and multigenerational effects of glyphosate and its commercial herbicide formulations, we assessed changes in bacterial and fungal populations in the caecum microbiota of rats exposed prenatally until adulthood (13 weeks after weaning) to three doses of glyphosate (0.5, 5, 50 mg/kg body weight/day), or to the formulated herbicide products Roundup Bioflow and RangerPro at the same glyphosate-equivalent doses. Caecum bacterial microbiota were evaluated by 16S rRNA sequencing whilst the fungal population was determined by ITS2 amplicon sequencing. Results showed that both fungal and bacterial diversity were affected by the Roundup formulations in a dose-dependent manner, whilst glyphosate alone significantly altered only bacterial diversity. At taxa level, a reduction in Bacteroidota abundance, marked by alterations in the levels of Alloprevotella, Prevotella and Prevotellaceae UCG-003 , was concomitant to increased levels of Firmicutes (e.g., Romboutsia, Dubosiella, Eubacterium brachy group or Christensenellaceae) and Actinobacteria (e.g., Enterorhabdus, Adlercreutzia , or Asaccharobacter ). Treponema and Mycoplasma also had their levels reduced by the pesticide treatments. Analysis of fungal composition indicated that the abundance of the rat gut commensal Ascomycota Kazachstania was reduced while the abundance of Gibberella, Penicillium, Claviceps, Cornuvesica, Candida, Trichoderma and Sarocladium were increased by exposure to the Roundup formulations, but not to glyphosate. Altogether, our data suggest that glyphosate and its Roundup RangerPro and Bioflow caused profound changes in caecum microbiome composition by affecting the fitness of major commensals, which in turn reduced competition and allowed opportunistic fungi to grow in the gut, in particular in animals exposed to the herbicide formulations. This further indicates that changes in gut microbiome composition might influence the long-term toxicity, carcinogenicity and multigenerational effects of glyphosate-based herbicides.
3
Citation4
0
Save
0

The Genomic Loci of Specific Human tRNA Genes Exhibit Ageing-Related DNA Hypermethylation

Richard Acton et al.Dec 10, 2019
Understanding how the epigenome deteriorates with age and subsequently impacts on biological function may bring unique insights to ageing-related disease mechanisms. As a central cellular apparatus, tRNAs are fundamental to the information flow from DNA to proteins. Whilst only being transcribed from ~46kb (<0.002%) of the human genome, their transcripts are the second most abundant in the cell. Furthermore, it is now increasingly recognised that tRNAs and their fragments also have complex regulatory functions. In both their core translational and additional regulatory roles, tRNAs are intimately involved in the control of metabolic processes known to affect ageing. Experimentally DNA methylation can alter tRNA expression, but little is known about the genomic DNA methylation state of tRNAs. Here, we find that the human genomic tRNA loci (610 tRNA genes termed the tRNAome) are enriched for ageing-related DNA hypermethylation. We initially identified DNA hypermethylation of 44 and 21 specific tRNA genes, at study-wide (p < 4.34e-9) and genome-wide (p < 4.34e-9) significance, respectively, in 4,350 MeDIP-seq peripheral blood DNA methylomes (16 - 82 years). This starkly contrasted with 0 hypomethylated at both these significance levels. Further analysing the 21 genome-wide results, we found 3 of these tRNAs to be independent of major changes in cell-type composition (tRNA-iMet-CAT-1-4, tRNA-Ser-AGA-2-6, tRNA-Ile-AAT-4-1). We also excluded the ageing-related changes being due to the inherent CpG density of the tRNAome by permutation analysis (1,000x, Empirical p-value < 1e-3). We additionally explored 79 tRNA loci in an independent cohort using Fluidigm deep targeted bisulfite-sequencing of pooled DNA (n=190) across a range of 4 timepoints (aged ~4, ~28, ~63, ~78 years). This revealed these ageing changes to be specific to particular isodecoder copies of these tRNA (tRNAs coding for the same amino acid but with sequence body differences) and included replication of 2 of the 3 genome-wide tRNAs. Additionally, this isodecoder-specificity may indicate the potential for regulatory fragment changes with age. In this study we provide the first comprehensive evaluation at the genomic DNA methylation state of the human tRNAome, revealing a discreet and strongly directional hypermethylation with advancing age.