Abstract Proteins evolve through the modular rearrangement of elements known as domains. It is hypothesized that extant, multidomain proteins are the result of domain accretion, but there has been limited experimental validation of this idea. Here, we introduce a technique for genetic m inimization by i terative s ize- e xclusion and r ecombination (MISER) that comprehensively assays all possible deletions of a protein. Using MISER, we generated a deletion landscape for the CRISPR protein Cas9. We found that Cas9 can tolerate large single deletions to the REC2, REC3, HNH, and RuvC domains, while still functioning in vitro and in vivo , and that these deletions can be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results demonstrate that extant proteins retain significant modularity from the accretion process and, as genetic size is a major limitation for viral delivery systems, establish a general technique to improve genome editing and gene therapy-based therapeutics.