MG
Martin Golebiewski
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
596
h-index:
22
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Making Epidemiological and Clinical Studies FAIR Using the Example of COVID-19

Iris Pigeot et al.Jun 3, 2024
Abstract FAIRification of personal health data is of utmost importance to improve health research and political as well as medical decision-making, which ultimately contributes to a better health of the general population. Despite the many advances in information technology, several obstacles such as interoperability problems remain and relevant research on the health topic of interest is likely to be missed out due to time-consuming search and access processes. A recent example is the COVID-19 pandemic, where a better understanding of the virus’ transmission dynamics as well as preventive and therapeutic options would have improved public health and medical decision-making. Consequently, the NFDI4Health Task Force COVID-19 was established to foster the FAIRification of German COVID-19 studies. This paper describes the various steps that have been taken to create low barrier workflows for scientists in finding and accessing German COVID-19 research. It provides an overview on the building blocks for FAIR health research within the Task Force COVID-19 and how this initial work was subsequently expanded by the German consortium National Research Data Infrastructure for Personal Health Data (NFDI4Health) to cover a wider range of studies and research areas in epidemiological, public health and clinical research. Lessons learned from the Task Force helped to improve the respective tasks of NFDI4Health.
0

Semi-Automatic Export of Electrophysiological Metadata to NFDI4Health Local Data Hubs: Use Case of Microneurography odML-Tables – A Technical Case Report

Mayra Elwes et al.Aug 30, 2024
Introduction: The Local Data Hub (LDH) is a platform for FAIR sharing of medical research (meta-)data. In order to promote the usage of LDH in different research communities, it is important to understand the domain-specific needs, solutions currently used for data organization and provide support for seamless uploads to a LDH. In this work, we analyze the use case of microneurography, which is an electrophysiological technique for analyzing neural activity. Methods: After performing a requirements analysis in dialogue with microneurography researchers, we propose a concept-mapping and a workflow, for the researchers to transform and upload their metadata. Further, we implemented a semi-automatic upload extension to odMLtables, a template-based tool for handling metadata in the electrophysiological community. Results: The open-source implementation enables the odML-to-LDH concept mapping, allows data anonymization from within the tool and the creation of custom-made summaries on the underlying data sets. Discussion: This concludes a first step towards integrating improved FAIR processes into the research laboratory’s daily workflow. In future work, we will extend this approach to other use cases to disseminate the usage of LDHs in a larger research community.
0

NFDI4Health Local Data Hubs Implementing a Tailored Metadata Schema for Health Data

Rupert Overall et al.Aug 30, 2024
Introduction: NFDI4Health is a consortium funded by the German Research Foundation to make structured health data findable and accessible internationally according to the FAIR principles. Its goal is bringing data users and Data Holding Organizations (DHOs) together. It mainly considers DHOs conducting epidemiological and public health studies or clinical trials. Methods: Local data hubs (LDH) are provided for such DHOs to connect decentralized local research data management within their organizations with the option of publishing shareable metadata via centralized NFDI4Health services such as the German central Health Study Hub. The LDH platform is based on FAIRDOM SEEK and provides a complete and flexible, locally controlled data and information management platform for health research data. A tailored NFDI4Health metadata schema for studies and their corresponding resources has been developed which is fully supported by the LDH software, e.g. for metadata transfer to other NFDI4Health services. Results: The SEEK platform has been technically enhanced to support extended metadata structures tailored to the needs of the user communities in addition to the existing metadata structuring of SEEK. Conclusion: With the LDH and the MDS, the NFDI4Health provides all DHOs with a standardized and free and open source research data management platform for the FAIR exchange of structured health data.
23

A versatile and interoperable computational framework for the analysis and modeling of COVID-19 disease mechanisms

Anna Niarakis et al.Dec 19, 2022
Abstract The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Community-driven and highly interdisciplinary, the project is collaborative and supports community standards, open access, and the FAIR data principles. The coordination of community work allowed for an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework links key molecules highlighted from broad omics data analysis and computational modeling to dysregulated pathways in a cell-, tissue- or patient-specific manner. We also employ text mining and AI-assisted analysis to identify potential drugs and drug targets and use topological analysis to reveal interesting structural features of the map. The proposed framework is versatile and expandable, offering a significant upgrade in the arsenal used to understand virus-host interactions and other complex pathologies.
0

Harmonizing semantic annotations for computational models in biology

Maxwell Neal et al.Jan 23, 2018
Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition, and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current semantic annotation practices among the COmputational Modeling in BIology NEtwork (COMBINE) community and provide a set of recommendations for building a consensus approach to semantic annotation.