WL
Weili Lin
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(82% Open Access)
Cited by:
7,214
h-index:
88
/
i10-index:
326
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Structural MRI Study of Human Brain Development from Birth to 2 Years

Rebecca Knickmeyer et al.Nov 19, 2008
Brain development in the first 2 years after birth is extremely dynamic and likely plays an important role in neurodevelopmental disorders, including autism and schizophrenia. Knowledge regarding this period is currently quite limited. We studied structural brain development in healthy subjects from birth to 2. Ninety-eight children received structural MRI scans on a Siemens head-only 3T scanner with magnetization prepared rapid gradient echo T1-weighted, and turbo spin echo, dual-echo (proton density and T2 weighted) sequences: 84 children at 2–4 weeks, 35 at 1 year and 26 at 2 years of age. Tissue segmentation was accomplished using a novel automated approach. Lateral ventricle, caudate, and hippocampal volumes were also determined. Total brain volume increased 101% in the first year, with a 15% increase in the second. The majority of hemispheric growth was accounted for by gray matter, which increased 149% in the first year; hemispheric white matter volume increased by only 11%. Cerebellum volume increased 240% in the first year. Lateral ventricle volume increased 280% in the first year, with a small decrease in the second. The caudate increased 19% and the hippocampus 13% from age 1 to age 2. There was robust growth of the human brain in the first two years of life, driven mainly by gray matter growth. In contrast, white matter growth was much slower. Cerebellum volume also increased substantially in the first year of life. These results suggest the structural underpinnings of cognitive and motor development in early childhood, as well as the potential pathogenesis of neurodevelopmental disorders.
0
Citation987
0
Save
0

Deep convolutional neural networks for multi-modality isointense infant brain image segmentation

Wenlu Zhang et al.Jan 3, 2015
The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multi-modality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement.
0

Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects

Wei Gao et al.Apr 8, 2009
Several lines of evidence have implicated the existence of the brain's default network during passive or undirected mental states. Nevertheless, results on the emergence of the default network in very young pediatric subjects are lacking. Using resting functional magnetic resonance imaging in healthy pediatric subjects between 2 weeks and 2 years of age, we describe the temporal evolution of the default network in a critical, previously unstudied, period of early human brain development. Our results demonstrate that a primitive and incomplete default network is present in 2-week-olds, followed by a marked increase in the number of brain regions exhibiting connectivity, and the percent of connection at 1 year of age. By 2 years of age, the default network becomes similar to that observed in adults, including medial prefrontal cortex (MPFC), posterior cingulate cortex/retrosplenial (PCC/Rsp), inferior parietal lobule, lateral temporal cortex, and hippocampus regions. While the anatomical representations of the default network highly depend on age, the PCC/Rsp is consistently observed at in both age groups and is central to the most and strongest connections of the default network, suggesting that PCC/Rsp may serve as the main “hub” of the default network as this region does in adults. In addition, although not as remarkable as the PCC/Rsp, the MPFC also emerges as a potential secondary hub starting from 1 year of age. These findings reveal the temporal development of the default network in the critical period of early brain development and offer new insights into the emergence of brain default network.
0

Infant Brain Atlases from Neonates to 1- and 2-Year-Olds

Feng Shi et al.Apr 14, 2011
Background Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. Methodology To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. Conclusions We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
0

Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain

John Gilmore et al.Feb 7, 2007
Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.
0

Longitudinal Development of Cortical and Subcortical Gray Matter from Birth to 2 Years

John Gilmore et al.Nov 22, 2011
Very little is known about cortical development in the first years of life, a time of rapid cognitive development and risk for neurodevelopmental disorders. We studied regional cortical and subcortical gray matter volume growth in a group of 72 children who underwent magnetic resonance scanning after birth and at ages 1 and 2 years using a novel longitudinal registration/parcellation approach. Overall, cortical gray matter volumes increased substantially (106%) in the first year of life and less so in the second year (18%). We found marked regional differences in developmental rates, with primary motor and sensory cortices growing slower in the first year of life with association cortices growing more rapidly. In the second year of life, primary sensory regions continued to grow more slowly, while frontal and parietal regions developed relatively more quickly. The hippocampus grew less than other subcortical structures such as the amygdala and thalamus in the first year of life. It is likely that these patterns of regional gray matter growth reflect maturation and development of underlying function, as they are consistent with cognitive and functional development in the first years of life.
0

Measuring tortuosity of the intracerebral vasculature from MRA images

E. Bullitt et al.Sep 1, 2003
The clinical recognition of abnormal vascular tortuosity, or excessive bending, twisting, and winding, is important to the diagnosis of many diseases. Automated detection and quantitation of abnormal vascular tortuosity from three-dimensional (3-D) medical image data would, therefore, be of value. However, previous research has centered primarily upon two-dimensional (2-D) analysis of the special subset of vessels whose paths are normally close to straight. This report provides the first 3-D tortuosity analysis of clusters of vessels within the normally tortuous intracerebral circulation. We define three different clinical patterns of abnormal tortuosity. We extend into 3-D two tortuosity metrics previously reported as useful in analyzing 2-D images and describe a new metric that incorporates counts of minima of total curvature. We extract vessels from MRA data, map corresponding anatomical regions between sets of normal patients and patients with known pathology, and evaluate the three tortuosity metrics for ability to detect each type of abnormality within the region of interest. We conclude that the new tortuosity metric appears to be the most effective in detecting several types of abnormalities. However, one of the other metrics, based on a sum of curvature magnitudes, may be more effective in recognizing tightly coiled, "corkscrew" vessels associated with malignant tumors.
0
Paper
Citation379
0
Save
0

3D conditional generative adversarial networks for high-quality PET image estimation at low dose

Yan Wang et al.Mar 20, 2018
Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures.
0

Functional Network Development During the First Year: Relative Sequence and Socioeconomic Correlations

Wei Gao et al.May 8, 2014
The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES–brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy.
0
Citation314
0
Save
Load More