EG
Elizabeta Gjoneska
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
8,271
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types

Yuan-Ta Lin et al.Jun 1, 2018
The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer’s disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aβ42 secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aβ uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aβ phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant.Video AbstracteyJraWQiOiI4ZjUxYWNhY2IzYjhiNjNlNzFlYmIzYWFmYTU5NmZmYyIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiJhMjEwM2U1MTllMDU5ZTU5NzQzNzFiY2ZkYzY2YjFmOCIsImtpZCI6IjhmNTFhY2FjYjNiOGI2M2U3MWViYjNhYWZhNTk2ZmZjIiwiZXhwIjoxNjc3ODM3NDAyfQ.cm_8iE6yPyIUtMA9CHuHdkKCpDzSoengfWtrTwQuK91RUFDu5wgXxv6w0LkGp3xIp4Q5ONl1L-nEkyqiD8y5XsDnNu29a6FOVkKPbcXQ_rWezgdGcufenbm5VD4lQ1jJIc236lH69WCL0EIWXgL49CYD2U02kBteDYs3OdY1fThG2C3slE8IyHEB1o6NHHpsyMLHAmkJEPUA_fNRg-NiC_Jk2khN70bJRGkX4pcIpAoo3inlbuuEHi04BCX2aBnzpTJZyManAMJK6AdyelKmaFWjYH93z-Dp8wadAwqXUIZj2l9ykRD2ucitOOP0XLYH-FJ4t9yO_sESEIZQ6NGSaQ(mp4, (11.59 MB) Download video
0
Citation799
0
Save
0

Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease

Elizabeta Gjoneska et al.Feb 17, 2015
Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.
0
Citation532
0
Save