MN
Maisa Nimer
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
9
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synthetic chromosome fusion: effects on genome structure and function

Jingchuan Luo et al.Aug 1, 2018
SUMMARY As part of the Synthetic Yeast 2.0 (Sc2.0) project, we designed and synthesized synthetic chromosome I. The total length of synI is ∼21.4% shorter than wild-type chromosome I, the smallest chromosome in Saccharomyces cerevisiae . SynI was designed for attachment to another synthetic chromosome due to concerns of potential instability and karyotype imbalance. We used a variation of a previously developed, robust CRISPR-Cas9 method to fuse chromosome I to other chromosome arms of varying length: chrIXR (84kb), chrIIIR (202kb) and chrIVR (1Mb). All fusion chromosome strains grew like wild-type so we decided to attach synI to synIII. Through the investigation of three-dimensional structures of fusion chromosome strains, unexpected loops and twisted structures were formed in chrIII-I and chrIX-III-I fusion chromosomes, which depend on silencing protein Sir3. These results suggest a previously unappreciated 3D interaction between HMR and the adjacent telomere. We used these fusion chromosomes to show that axial element Red1 binding in meiosis is not strictly chromosome size dependent even though Red1 binding is enriched on the three smallest chromosomes in wild-type yeast, and we discovered an unexpected role for centromeres in Red1 binding patterns.
0
Citation6
0
Save
22

Manipulating the 3D organization of the largest synthetic yeast chromosome

Weimin Zhang et al.Apr 10, 2022
Summary Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field, especially when the synthetic genomes are extensively modified with thousands of designer features. Here we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV , a 1,454,621-bp Saccharomyces cerevisiae chromosome resulting from extensive genome streamlining and modification. During the construction of synIV , we developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction and facilitated chromosome debugging. In addition to the drastic sequence changes made to synIV by rewriting it, we further manipulated the three-dimensional structure of synIV in the yeast nucleus to explore spatial gene regulation within the nuclear space. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of the largest synthetic yeast chromosome shed light on higher-order architectural design of the synthetic genomes. Graphical abstract Highlights De novo synthesis of the largest eukaryotic chromosome, synIV SynIV shows similar 3D structure to wild-type IV, despite thousands of changes made to it “Inside-out” repositioning of synIV in nucleus shows minor transcriptional changes Multipoint tethering synIV to inner nuclear membrane represses transcription of whole chromosome
22
Citation3
0
Save