GS
Gianluca Severi
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(47% Open Access)
Cited by:
4,171
h-index:
98
/
i10-index:
404
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple newly identified loci associated with prostate cancer susceptibility

Rosalind Eeles et al.Feb 10, 2008
+42
G
Z
R
0
Citation839
0
Save
0

A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3

Ian Tomlinson et al.Mar 30, 2008
+72
L
E
I
0
Citation562
0
Save
0

Detectable clonal mosaicism and its relationship to aging and cancer

Kevin Jacobs et al.May 6, 2012
+97
W
M
K
Luis Pérez-Jurado, Stephen Chanock and colleagues detect clonal chromosomal abnormalities in peripheral blood or buccal samples from individuals in the general population. They show that the frequency of such events increases with age and is associated with elevated risk of developing subsequent hematological cancers. In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10−8). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10−11). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
0
Citation552
0
Save
0

Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

Rosalind Eeles et al.Mar 27, 2013
+94
S
A
R
Rosalind Eeles and colleagues report meta-analysis of genome-wide association studies for prostate cancer and genotyping on the custom iCOGS array in 25,074 cases and 24,272 controls from 32 studies available in the PRACTICAL Consortium. They identify 23 new prostate cancer susceptibility loci, 20 of which are associated with both aggressive and non-aggressive disease. Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ∼30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.
0
Citation527
0
Save
0

Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

Shahana Ahmed et al.Mar 29, 2009
+92
M
G
S
Douglas Easton and colleagues report results of a large multistage genome-wide association study of breast cancer. The study identifies two new breast cancer risk loci on chromosomes 3p24 and 17q23.2. Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage, and 3,990 cases and 3,916 controls in the second stage1. To identify additional loci, we tested over 800 promising associations from this GWAS in a further two stages involving 37,012 cases and 40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association Consortium. We found strong evidence for additional susceptibility loci on 3p (rs4973768: per-allele OR = 1.11, 95% CI = 1.08–1.13, P = 4.1 × 10−23) and 17q (rs6504950: per-allele OR = 0.95, 95% CI = 0.92–0.97, P = 1.4 × 10−8). Potential causative genes include SLC4A7 and NEK10 on 3p and COX11 on 17q.
0
Citation480
0
Save
0

Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases

Philip Haycock et al.Feb 27, 2017
+100
A
S
P

Importance

 The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. 

Objective

 To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. 

Data Sources

 Genomewide association studies (GWAS) published up to January 15, 2015. 

Study Selection

 GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. 

Data Extraction and Synthesis

 Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. 

Main Outcomes and Measures

 Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. 

Results

 Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [95% CI, 0.05-0.15]). 

Conclusions and Relevance

 It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
0
Citation433
0
Save
0

Identification of seven new prostate cancer susceptibility loci through a genome-wide association study

Rosalind Eeles et al.Sep 20, 2009
+97
A
Z
R
Rosalind Eeles and colleagues present a genome-wide association study for prostate cancer. They report seven loci newly associated with prostate cancer susceptibility. Prostate cancer (PrCa) is the most frequently diagnosed cancer in males in developed countries. To identify common PrCa susceptibility alleles, we previously conducted a genome-wide association study in which 541,129 SNPs were genotyped in 1,854 PrCa cases with clinically detected disease and in 1,894 controls. We have now extended the study to evaluate promising associations in a second stage in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls and in a third stage involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to replicating previous associations, we identified seven new prostate cancer susceptibility loci on chromosomes 2, 4, 8, 11 and 22 (with P = 1.6 × 10−8 to P = 2.7 × 10−33).
0
Citation413
0
Save
0

Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics

Montserrat García‐Closas et al.Apr 25, 2008
+96
H
P
M
A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27–1.36)) than ER-negative (1.08 (1.03–1.14)) disease (P for heterogeneity = 10−13). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10−5, 10−8, 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10−4, respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09–1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83–0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
0
Citation365
0
Save
0

An epigenome-wide association study of educational attainment (n = 10,767)

Richard Linnér et al.Mar 7, 2017
+72
N
R
R
Abstract The epigenome has been shown to be influenced by biological factors, such as disease status, and environmental factors, such as smoking, alcohol consumption, and body mass index. Although there is a widespread perception that environmental influences on the epigenome are pervasive and profound, there has been little evidence to date in humans with respect to environmental factors that are biologically distal. Here, we provide evidence on the associations between epigenetic modifications—in our case, CpG methylation—and educational attainment (EA), a biologically distal environmental factor that is arguably among of the most important life-shaping experiences for individuals. Specifically, we report the results of an epigenome-wide association study meta-analysis of EA based on data from 27 cohort studies with a total of 10,767 individuals. While we find that 9 CpG probes are significantly associated with EA, only two remain associated when we restrict the sample to never-smokers. These two are known to be strongly associated with maternal smoking during pregnancy, and thus their association with EA could be due to correlation between EA and maternal smoking. Moreover, their effect sizes on EA are far smaller than the known associations between CpG probes and biologically proximal environmental factors. Two analyses that combine the effects of many probes—polygenic methylation score and epigenetic-clock analyses—both suggest small associations with EA. If our findings regarding EA can be generalized to other biologically distal environmental factors, then they cast doubt on the hypothesis that such factors have large effects on the epigenome.
0

Blood-based DNA methylation markers for lung cancer prediction

Justina Onwuka et al.May 1, 2024
+13
R
F
J
Objective Screening high-risk individuals with low-dose CT reduces mortality from lung cancer, but many lung cancers occur in individuals who are not eligible for screening. Risk biomarkers may be useful to refine risk models and improve screening eligibility criteria. We evaluated if blood-based DNA methylation markers can improve a traditional lung cancer prediction model. Methods and analysis This study used four prospective cohorts with blood samples collected prior to lung cancer diagnosis. The study was restricted to participants with a history of smoking, and one control was individually matched to each lung cancer case using incidence density sampling by cohort, sex, date of blood collection, age and smoking status. To train a DNA methylation-based risk score, we used participants from Melbourne Collaborative Cohort Study-Australia (n=648) and Northern Sweden Health and Disease Study-Sweden (n=380) based on five selected CpG sites. The risk discriminative performance of the methylation score was subsequently validated in participants from European Investigation into Cancer and Nutrition-Italy (n=267) and Norwegian Women and Cancer-Norway (n=185) and compared with that of the questionnaire-based PLCOm2012 lung cancer risk model. Results The area under the receiver operating characteristic curve (AUC) for the PLCOm2012 model in the validation studies was 0.70 (95% CI: 0.65 to 0.75) compared with 0.73 (95% CI: 0.68 to 0.77) for the methylation score model ( P difference =0.07). Incorporating the methylation score with the PLCOm2012 model did not improve the risk discrimination (AUC: 0.73, 95% CI: 0.68 to 0.77, P difference =0.73). Conclusions This study suggests that the methylation-based risk prediction score alone provides similar lung cancer risk-discriminatory performance as the questionnaire-based PLCOm2012 risk model.
Load More