XS
Xiang Shu
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
244
h-index:
27
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Common variants in breast cancer risk loci predispose to distinct tumor subtypes

Thomas Ahearn et al.Aug 15, 2019
Abstract Background Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER), but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. Methods Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. Results Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate <5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at P<0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. Conclusion This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
0
Citation2
0
Save
0

Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk

Yaohua Yang et al.Jul 18, 2024
Abstract The relationship between tissue-specific DNA methylation and cancer risk remains inadequately elucidated. Leveraging resources from the Genotype-Tissue Expression consortium, here we develop genetic models to predict DNA methylation at CpG sites across the genome for seven tissues and apply these models to genome-wide association study data of corresponding cancers, namely breast, colorectal, renal cell, lung, ovarian, prostate, and testicular germ cell cancers. At Bonferroni-corrected P < 0.05, we identify 4248 CpGs that are significantly associated with cancer risk, of which 95.4% (4052) are specific to a particular cancer type. Notably, 92 CpGs within 55 putative novel loci retain significant associations with cancer risk after conditioning on proximal signals identified by genome-wide association studies. Integrative multi-omics analyses reveal 854 CpG-gene-cancer trios, suggesting that DNA methylation at 309 distinct CpGs might influence cancer risk through regulating the expression of 205 unique cis -genes. These findings substantially advance our understanding of the interplay between genetics, epigenetics, and gene expression in cancer etiology.
0
Citation1
0
Save
0

Case-Case Genome-Wide Analyses Identify Subtype-Informative Variants that Confer Risk for Breast Cancer

Xiaohui Sun et al.Jun 4, 2024
Abstract Breast cancer includes several subtypes with distinct characteristic biological, pathologic, and clinical features. Elucidating subtype-specific genetic etiology could provide insights into the heterogeneity of breast cancer to facilitate the development of improved prevention and treatment approaches. In this study, we conducted pairwise case–case comparisons among five breast cancer subtypes by applying a case–case genome-wide association study (CC-GWAS) approach to summary statistics data of the Breast Cancer Association Consortium. The approach identified 13 statistically significant loci and eight suggestive loci, the majority of which were identified from comparisons between triple-negative breast cancer (TNBC) and luminal A breast cancer. Associations of lead variants in 12 loci remained statistically significant after accounting for previously reported breast cancer susceptibility variants, among which, two were genome-wide significant. Fine mapping implicated putative functional/causal variants and risk genes at several loci, e.g., 3q26.31/TNFSF10, 8q22.3/NACAP1/GRHL2, and 8q23.3/LINC00536/TRPS1, for TNBC as compared with luminal cancer. Functional investigation further identified rs16867605 at 8q22.3 as a SNP that modulates the enhancer activity of GRHL2. Subtype-informative polygenic risk scores (PRS) were derived, and patients with a high subtype-informative PRS had an up to two-fold increased risk of being diagnosed with TNBC instead of luminal cancers. The CC-GWAS PRS remained statistically significant after adjusting for TNBC PRS derived from traditional case–control GWAS in The Cancer Genome Atlas and the African Ancestry Breast Cancer Genetic Consortium. The CC-GWAS PRS was also associated with overall survival and disease-specific survival among patients with breast cancer. Overall, these findings have advanced our understanding of the genetic etiology of breast cancer subtypes, particularly for TNBC. Significance: The discovery of subtype-informative genetic risk variants for breast cancer advances our understanding of the etiologic heterogeneity of breast cancer, which could accelerate the identification of targets and personalized strategies for prevention and treatment.
0

Enhancing disease risk gene discovery by integrating transcription factor-linked trans-variants into transcriptome-wide association analyses

Jingni He et al.Nov 13, 2024
Abstract Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-variants to enhance model building for TF downstream target genes. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these prediction models to large GWAS datasets for breast, prostate, lung cancers and other diseases. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene expression prediction models and identifying disease-associated genes, as shown by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study shed new light on several genetically driven key TF regulators and their associated TF–gene regulatory networks underlying disease susceptibility.