AS
Aaron Sarver
Author with expertise in Role of Long Noncoding RNAs in Cancer and Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(82% Open Access)
Cited by:
2,447
h-index:
45
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DMRT1 prevents female reprogramming in the postnatal mammalian testis

Clinton Matson et al.Jul 20, 2011
The presence or absence of the Y-chromosome gene Sry determines whether precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells in the mammalian fetus. Loss of the transcription factor FOXL2 in the adult ovary can lead to transdifferentiation of granulosa cells into Sertoli cells, but in males the sex-determining decision was thought to be stable. This study shows that this is not the case: adult mouse testicular cells become ovarian cells if the Dmrt1 gene is lost. In the absence of transcription factor DMRT1, FOXL2 is activated and Sertoli cells are reprogrammed as granulosa cells. Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells1. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/β-catenin signalling2. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells2. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor3 in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates4,5 and Dmrt1-related sexual regulators are conserved throughout metazoans3. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation6 and testicular cancer7.
0
Citation590
0
Save
0

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu et al.Feb 1, 2012
Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.
0
Citation387
0
Save
0

Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

Aaron Sarver et al.Nov 18, 2009
Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression. To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR. Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes. Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.
0
Citation310
0
Save
0

MicroRNA miR-183 Functions as an Oncogene by Targeting the Transcription FactorEGR1and Promoting Tumor Cell Migration

Aaron Sarver et al.Dec 1, 2010
The transcription factor EGR1 is a tumor suppressor gene that is downregulated in many cancer types. Clinically, loss of EGR1 translates to increased tumor transformation and subsequent patient morbidity and mortality. In synovial sarcoma, the SS18-SSX fusion protein represses EGR1 expression through a direct association with the EGR1 promoter. However, the mechanism through which EGR1 becomes downregulated in other tumor types is unclear. Here, we report that EGR1 is regulated by microRNA (miR)-183 in multiple tumor types including synovial sarcoma, rhabdomyosarcoma (RMS), and colon cancer. Using an integrative network analysis, we identified that miR-183 is significantly overexpressed in these tumor types as well as in corresponding tumor cell lines. Bioinformatic analyses suggested that miR-183 could target EGR1 mRNA and this specific interaction was validated in vitro. miR-183 knockdown in synovial sarcoma, RMS, and colon cancer cell lines revealed deregulation of a miRNA network composed of miR-183-EGR1-PTEN in these tumors. Integrated miRNA- and mRNA-based genomic analyses indicated that miR-183 is an important contributor to cell migration in these tumor types and this result was functionally validated to be occurring via an EGR1-based mechanism. In conclusion, our findings have significant implications in the mechanisms underlying EGR1 regulation in cancers. miR-183 has a potential oncogenic role through the regulation of 2 tumor suppressor genes, EGR1 and PTEN, and the deregulation of this fundamental miRNA regulatory network may be central to many tumor types.
0
Citation272
0
Save
0

PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response

Jie Li et al.May 16, 2020
Abstract Precision medicine in oncology leverages clinical observations of exceptional response. Towards an understanding of the molecular features that define this response, we applied an integrated, multi-platform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted isoform of PI3K, PI3Kγ, by pharmacologic inhibition or genetic inactivation, disrupted this signaling axis by suppressing microglia/macrophage accumulation and associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy. Significance Statement Understanding the basis for exceptional responders represents a key pillar in the framework of precision medicine. In this study, we utilized distinct informatics platforms to analyze the expression profiles of clinically annotated tumor specimens derived from patients afflicted with glioblastoma, the most common form of primary brain cancer. These analyses converged on prognostic contributions from glioblastoma-associated microglia/macrophages. Glioblastoma-associated microglia secreted interleukin 11 (IL11) to activate a STAT3-MYC signaling axis in glioblastoma cells, facilitating resistance to the standard-of-care chemotherapy, temozolomide. Microglia recruitment and IL11 secretion were dependent on the myeloid specific phosphoinositide-3-kinase gamma isoform (PI3Kγ). Inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in specimens derived from exceptional responders, suggesting potential for clinical translation.
0
Citation3
0
Save
0

Comparative analysis of genome-wide DNA methylation identifies patterns that associate with conserved transcriptional programs in osteosarcoma

Lauren Mills et al.Apr 30, 2020
Abstract Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor suppressor p53 TP53 is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples. Significance This is the first large scale study of DNA methylation in osteosarcoma and lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of different genomic landscapes.
0
Citation3
0
Save
5

Genomically Complex Human Angiosarcoma and Canine Hemangiosarcoma Establish Convergent Angiogenic Transcriptional Programs Driven by Novel Gene Fusions

Jong Kim et al.Aug 12, 2020
Abstract Sporadic angiosarcomas (ASs) are aggressive vascular sarcomas whose rarity and genomic complexity present significant obstacles in deciphering the pathogenic significance of individual genetic alterations. Numerous fusion genes have been identified across multiple types of cancers, but their existence and significance remain unclear in sporadic ASs. In this study, we leveraged RNA sequencing data from thirteen human ASs and 76 spontaneous canine hemangiosarcomas (HSAs) to identify fusion genes associated with spontaneous vascular malignancies. Ten novel protein-coding fusion genes, including TEX2-PECAM1 and ATP8A2-FLT1, were identified in seven of the thirteen human tumors, with two tumors showing mutations of TP53. HRAS and NRAS mutations were found in ASs without fusions or TP53 mutations. We found fifteen novel protein-coding fusion genes including MYO16-PTK2, GABRA3-FLT1, and AKT3-XPNPEP1 in eleven of the 76 canine HSAs; these fusion genes were seen exclusively in tumors of the angiogenic molecular subtype that contained recurrent mutations in TP53, PIK3CA, PIK3R1, and NRAS. In particular, fusion genes and mutations of TP53 co-occurred in tumors with higher frequency than expected by random chance, and they enriched gene signatures predicting activation of angiogenic pathways. Comparative transcriptomic analysis of human ASs and canine HSAs identified shared molecular signatures associated with activation of PI3K/AKT/mTOR pathways. Our data show that, while driver events of malignant vasoformative tumors of humans and dogs include diverse mutations and stochastic rearrangements that create novel fusion genes, convergent transcriptional programs govern the highly conserved morphological organization and biological behavior of these tumors in both species.
5
Citation1
0
Save
Load More