MC
Mingyu Chung
Author with expertise in The p53 Signaling Network in Cancer Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
1,169
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0
1

Cdt1 inhibits CMG helicase in early S phase to separate origin licensing from DNA synthesis

Nalin Ratnayeke et al.Jul 6, 2021
Abstract A fundamental concept in eukaryotic DNA replication is the temporal separation of G1 origin licensing from S phase origin firing. Re-replication and genome instability ensue if licensing occurs after DNA synthesis has started. In humans and other vertebrates, the E3 ubiquitin ligase CRL4 Cdt2 starts to degrade the licensing factor Cdt1 after origins fire, raising the question of how cells prevent re-replication in early S phase. Here, using quantitative microscopy, we show that Cdt1 inhibits DNA synthesis during an overlap period when cells fire origins while Cdt1 is still present. Cdt1 inhibits DNA synthesis by suppressing CMG helicase progression at replication forks through the MCM-binding domain of Cdt1, and DNA synthesis commences once Cdt1 is degraded. Thus, instead of separating licensing from firing to prevent re-replication in early S phase, cells separate licensing from DNA synthesis through Cdt1-mediated inhibition of CMG helicase after firing. Highlights – Cdt1 is present together with fired origins of replication at the start of S phase – Cdt1 delays DNA synthesis by inhibiting CMG helicase progression after origins fire – Cdt1 inhibits CMG helicase progression through the MCM-binding domain of Cdt1
0

Transcription factor dynamics reveals a circadian code for fat cell differentiation

Zahra Bahrami-Nejad et al.Jan 9, 2018
Glucocorticoid and other adipogenic hormones are secreted in mammals in circadian oscillations. Loss of this circadian oscillation pattern during stress and disease correlates with increased fat mass and obesity in humans, raising the intriguing question of how hormone secretion dynamics affect the process of adipocyte differentiation. By using live, single-cell imaging of the key adipogenic transcription factors CEBPB and PPARG, endogenously tagged with fluorescent proteins, we show that pulsatile circadian hormone stimuli are rejected by the adipocyte differentiation control system, leading to very low adipocyte differentiation rates. In striking contrast, equally strong persistent signals trigger maximal differentiation. We identify the mechanism of how hormone oscillations are filtered as a combination of slow and fast positive feedback centered on PPARG. Furthermore, we confirm in mice that flattening of daily glucocorticoid oscillations significantly increases the mass of subcutaneous and visceral fat pads. Together, our study provides a molecular mechanism for why stress, Cushing's disease, and other conditions for which glucocorticoid secretion loses its pulsatility can lead to obesity. Given the ubiquitous nature of oscillating hormone secretion in mammals, the filtering mechanism we uncovered may represent a general temporal control principle for differentiation.