TG
Tais Gorkhover
Author with expertise in X-ray Imaging Techniques and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
3,262
h-index:
25
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Seibert et al.Feb 1, 2011
The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. Two papers in this issue of Nature present proof-of-concept experiments showing the LCLS in action. Chapman et al. tackle structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. They obtain more than three million diffraction patterns from a stream of nanocrystals of the membrane protein photosystem I, and assemble a three-dimensional data set for this protein. Seibert et al. obtain images of a non-crystalline biological sample, mimivirus, by injecting a beam of cooled mimivirus particles into the X-ray beam. The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique. X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1,2,3,4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
0

Non-linear enhancement of ultrafast X-ray diffraction through transient resonances

Stephan Kuschel et al.Jan 20, 2025
Abstract Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structure can be reconstructed from the coherent diffraction image (CDI). State-of-the-art X-ray snapshots lack high spatial resolution because of weak diffraction signal. Bleaching effects from photo-ionization significantly restrain image brightness scaling. We find that non-linear transient ion resonances can overcome this barrier if X-ray laser pulses are shorter than in most experiments. We compared snapshots from individual ≈ 100 nm Xe nanoparticles as a function of pulse duration and incoming X-ray fluence. Our experimental results and Monte Carlo simulations suggest that transient resonances can increase ionic scattering cross sections significantly beyond literature values. This provides a novel avenue towards substantial improvement of the spatial resolution in CDI in combination with sub-femtosecond temporal precision at the nanoscale.