TH
Tia Harrison
Author with expertise in Symbiotic Nitrogen Fixation in Legumes
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
2
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Symbiosis with rhizobia limits range expansion only in polyploid legumes

Zoe Parshuram et al.Mar 3, 2022
Summary Both mutualism and polyploidy are thought to influence invasion success in plants but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant’s niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success. For 839 legume species, we compiled data from published sources to estimate ploidy, symbiotic status with rhizobia, specificity on rhizobia, and the number of introduced ranges. We found that diploid species have had limited spread around the globe regardless of whether they are symbiotic or how many partners of rhizobia they can host. Polyploids, in contrast, have been successfully introduced to many new ranges, but interactions with rhizobia constrain their range expansion. In a hidden state model of trait evolution, we also found evidence of a high rate of re-diploidization in symbiotic legume lineages, suggesting that symbiosis and ploidy may interact at macroevolutionary scales. Overall, our results suggest that symbiosis with rhizobia affects range expansion only in polyploid legumes.
14
Citation2
0
Save
0

No evidence for adaptation to local rhizobial mutualists in the legume Medicago lupulina

Tia Harrison et al.Sep 30, 2016
Local adaptation is a common but not ubiquitous feature of species interactions, and understanding the circumstances under which it evolves illuminates the factors that influence adaptive population divergence. Antagonistic species interactions dominate the local adaptation literature relative to mutualistic ones, preventing an overall assessment of adaptation within interspecific interactions. Here, we tested whether the legume Medicago lupulina is adapted to the locally abundant species of mutualistic nitrogen-fixing bacteria ("rhizobia"), which vary in frequency across its eastern North American range. We reciprocally inoculated northern and southern M. lupulina genotypes with the northern (Ensifer medicae) or southern bacterium (E. meliloti) in a greenhouse experiment. Neither northern nor southern plants produced more seeds, flowered earlier, or were more likely to flower when inoculated with their local rhizobium species, although plants produced more root nodules (the structures that house the bacteria) with their local rhizobia. We used a pre-existing dataset to perform a genome scan for loci that showed elevated differentiation between field-collected plants that hosted different bacteria. None of the loci we identified belonged to the well-characterized suite of legume-rhizobia symbiosis genes, suggesting that the rhizobia do not drive genetic divergence between M. lupulina populations. Our results demonstrate that symbiont local adaptation is weak in this mutualism despite large-scale geographic variation in the identity of the interacting species.
0

Elevated rates of molecular evolution genome-wide in mutualist legumes and rhizobia

Tia Harrison et al.Jun 11, 2024
Abstract Rates of molecular evolution vary greatly among even closely related species. Although theory predicts that antagonistic interactions between species increase rates of molecular evolution, predictions for how mutualism affects evolutionary rates are mixed. Here, we compared rates of molecular evolution between 1) mutualistic and non-mutualistic legumes, 2) an independent set of symbiotic rhizobia and their non-symbiotic close relatives, and 3) symbiotic and non-symbiotic clades within Ensifer , a diverse genus of bacteria with various lifestyles. We assembled transcriptomes de novo for 12 legume species and then calculated dN/dS ratios at orthologous genes in all species to determine if genes in mutualistic plants evolve faster or slower than in their non-mutualistic relatives. We also calculated dN/dS ratios in symbiosis genes known to be important for nodulation with rhizobia. We found that mutualists have higher rates of molecular evolution genome-wide compared to non-mutualist legumes. We next calculated dN/dS ratios in 14 bacteria species across the proteobacteria phylogeny that differ in whether they associate mutualistically with plants, using previously published data. We found that in most pairs, symbiotic rhizobia show higher dN/dS values compared to their non-symbiotic relatives. Finally, within a bacterial genus with many well-characterized mutualist species ( Ensifer ), we calculated dN/dS ratios in symbiotic and non-symbiotic clades and found that symbiotic lineages have higher rates of molecular evolution genome-wide, but not at genes on the symbiotic plasmid pSymB. Our results suggest that although mutualism between legumes and rhizobia is associated with elevated rates of molecular evolution genome-wide, symbiosis genes may be evolutionarily stagnant.
1

Is there a latitudinal diversity gradient for symbiotic microbes? A case study with sensitive partridge peas

Tia Harrison et al.May 4, 2023
Abstract Mutualism is more prevalent in the tropics than temperate zones and is therefore expected to play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans . We sampled bacteria DNA from nodules and the surrounding soil of plant roots across a latitudinal gradient (38.64 °N to 8.68 °N). Using 16S rRNA sequence data, we identified many non-rhizobial species within C. nictitans nodules that cannot form nodules or fix nitrogen. Species richness increased towards lower latitudes in the non-rhizobial portion of the nodule community but not in the rhizobial community. The microbe community in the soil did not predict the non-rhizobia community inside nodules, indicating that host selection is important for structuring non-rhizobia communities in nodules. We next factorially manipulated the presence of three non-rhizobia strains in greenhouse experiments and found that co-inoculations of non-rhizobia strains with rhizobia had a marginal effect on nodule number and no effect on plant growth. Our results suggest that these non-rhizobia bacteria are likely commensals – species that benefit from associating with a host but are neutral for host fitness. Overall, our study suggests that temperate C. nictitans plants are more selective in their associations with the non-rhizobia community, potentially due to differences in soil nitrogen across latitude.
0

Elevated rates of molecular evolution genome-wide in mutualist legumes and rhizobia

Tia Harrison et al.Nov 28, 2024
Abstract Rates of molecular evolution vary greatly among even closely related species. Although theory predicts that antagonistic interactions between species increase rates of molecular evolution, predictions for how mutualism affects evolutionary rates are mixed. We compared rates of molecular evolution between 1) mutualistic and non-mutualistic legumes, 2) an independent set of symbiotic rhizobia and their non-symbiotic close relatives, and 3) symbiotic and non-symbiotic clades within Ensifer, a diverse genus of bacteria with various lifestyles. We assembled transcriptomes de novo for 12 legume species and calculated dN/dS ratios at orthologous genes in all species to determine if genes in mutualistic plants evolve faster or slower than in their non-mutualistic relatives. We also calculated dN/dS ratios in genes known to be important for symbiosis. We found that mutualists have higher rates of molecular evolution genome-wide compared to non-mutualist legumes, but this pattern did not hold in symbiosis genes. We next calculated dN/dS ratios in 14 bacteria species across the proteobacteria phylogeny that differ in whether they associate mutualistically with plants, using published data. In most pairs, symbiotic rhizobia show higher dN/dS values compared to their non-symbiotic relatives. Within a bacterial genus with many well-characterized mutualist species (Ensifer), we calculated dN/dS ratios in symbiotic and non-symbiotic clades and found that symbiotic lineages have higher rates of molecular evolution genome-wide, but not at genes on the symbiotic plasmid pSymB. Our results suggest that although mutualism between legumes and rhizobia is associated with elevated rates of molecular evolution genome-wide, symbiosis genes may be evolutionarily stagnant.
0

Geographically structured genetic variation in the Medicago lupulina-Ensifer mutualism

Tia Harrison et al.Mar 15, 2017
Mutualisms are interspecific interactions affecting the ecology and evolution of species. Patterns of geographic variation in interacting species may play an important role in understanding how variation is maintained in mutualisms, particularly in introduced ranges. One agriculturally and ecologically important mutualism is the partnership between legume plants and rhizobia. Through characterizing and comparing the population genomic structure of the legume Medicago lupulina and two rhizobial species (Ensifer medicae and E. meliloti), we explored the spatial scale of population differentiation between interacting partners in their introduced range in North America. We found high proportions of E. meliloti in southeastern populations and high proportions of E. medicae in northwestern populations. Medicago lupulina and the Ensifer genus showed similar patterns of spatial genetic structure (isolation by distance). However, we detected no evidence of isolation by distance or population structure within either species of bacteria. Genome-wide nucleotide diversity within each of the two Ensifer species was low, suggesting limited introduction of strains, founder events, or severe bottlenecks. Our results suggest that there is potential for geographically structured coevolution between M. lupulina and the Ensifer genus, but not between M. lupulina and either Ensifer species.