HZ
Huanhuan Zhu
Author with expertise in Genomic Rearrangements and Copy Number Variations
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
5
h-index:
20
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies

Zhongshang Yuan et al.Jul 3, 2019
+5
P
H
Z
Abstract Integrating association results from both genome-wide association studies (GWASs) and expression quantitative trait locus (eQTL) mapping studies has the potential to shed light on the molecular mechanisms underlying disease etiology. Several statistical methods have been recently developed to integrate GWASs with eQTL studies in the form of transcriptome-wide association studies (TWASs). These existing methods can all be viewed as a form of two sample Mendelian randomization (MR) analysis, which has been widely applied in various GWASs for inferring the causal relationship among complex traits. Unfortunately, most existing TWAS and MR methods make an unrealistic modeling assumption and assume that instrumental variables do not exhibit horizontal pleiotropic effects. However, horizontal pleiotropic effects have been recently discovered to be wide spread across complex traits, and, as we will show here, are also wide spread across gene expression traits. Therefore, not allowing for horizontal pleiotropic effects can be overly restrictive, and, as we will be show here, can lead to a substantial inflation of test statistics and subsequently false discoveries in TWAS applications. Here, we present a probabilistic MR method, which we refer to as PMR-Egger, for testing and controlling for horizontal pleiotropic effects in TWAS applications. PMR-Egger relies on an MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and, with a newly developed parameter expansion version of the expectation maximization algorithm, is scalable to hundreds of thousands of individuals. With extensive simulations, we show that PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust for various types of horizontal pleiotropic effect mis-specifications, is more powerful than existing MR approaches, and, as a by-product, can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank. In these applications, we show how PMR-Egger can lead to new biological discoveries through integrative analysis.
0
Citation5
0
Save
0

Utilizing Non-Invasive Prenatal Test Sequencing Data Resource for Human Genetic Investigation

Siyang Liu et al.Jan 1, 2023
+16
Y
S
S
Non-invasive prenatal testing (NIPT) employs ultra-low-pass sequencing of maternal plasma cell-free DNA to detect fetal trisomy. With exceptional sensitivity, specificity, and safety, NIPT has gained global adoption, exceeding ten million tests, establishing it as one of the largest human genetic resources. This resource holds immense potential for exploring population genetic variations and their correlations with phenotypes. Here, we present comprehensive methods tailored for analyzing large, low-depth NIPT genetic datasets, involving customized algorithms and software for genetic variation detection, genotype imputation, and genome-wide association analysis. Through evaluations, we demonstrate that, when integrated with appropriate probabilistic models and population-specific haplotype reference panels, accurate allele frequency estimation and high genotype imputation accuracy (0.8 to 0.9) are achievable for genetic variants with alternative allele frequencies between 0.01 and 0.05, at sequencing depths of 0.1x to 0.25x. Additionally, we attained an R-square exceeding 0.9 for estimating genetic effect sizes across various sequencing platforms. These findings establish a robust theoretical and practical foundation for leveraging NIPT data in advancing medical genetic studies, not only in realms of maternal and child health, but also for long-term health outcomes.
0

A Contract-Based Incentive Mechanism for Joint Data Sensing and Communication in Mobile Crowdsourcing Networks

Nan Zhao et al.Jan 1, 2024
+2
Y
H
N
0

NIPT-PG: empowering non-invasive prenatal testing to learn from population genomics through an incremental pan-genomic approach

Zhengfa Xue et al.May 23, 2024
+4
X
A
Z
Abstract Non-invasive prenatal testing (NIPT) is a quite popular approach for detecting fetal genomic aneuploidies. However, due to the limitations on sequencing read length and coverage, NIPT suffers a bottleneck on further improving performance and conducting earlier detection. The errors mainly come from reference biases and population polymorphism. To break this bottleneck, we proposed NIPT-PG, which enables the NIPT algorithm to learn from population data. A pan-genome model is introduced to incorporate variant and polymorphic loci information from tested population. Subsequently, we proposed a sequence-to-graph alignment method, which considers the read mis-match rates during the mapping process, and an indexing method using hash indexing and adjacency lists to accelerate the read alignment process. Finally, by integrating multi-source aligned read and polymorphic sites across the pan-genome, NIPT-PG obtains a more accurate z-score, thereby improving the accuracy of chromosomal aneuploidy detection. We tested NIPT-PG on two simulated datasets and 745 real-world cell-free DNA sequencing data sets from pregnant women. Results demonstrate that NIPT-PG outperforms the standard z-score test. Furthermore, combining experimental and theoretical analyses, we demonstrate the probably approximately correct learnability of NIPT-PG. In summary, NIPT-PG provides a new perspective for fetal chromosomal aneuploidies detection. NIPT-PG may have broad applications in clinical testing, and its detection results can serve as a reference for false positive samples approaching the critical threshold.