Collecting useful, interpretable, and biologically relevant phenotypes in a resource-efficient manner is a bottleneck to plant breeding, genetic mapping, and genomic prediction. Autonomous and affordable sub-canopy rovers are an efficient and scalable way to generate sensor-based datasets of in-field crop plants. Rovers equipped with light detection and ranging (LiDar) can produce three-dimensional reconstructions of entire hybrid maize fields. In this study, we collected 2,103 LiDar scans of hybrid maize field plots and extracted phenotypic data from them by Latent Space Phenotyping (LSP). We performed LSP by two methods, principal component analysis (PCA) and a convolutional autoencoder, to extract meaningful, quantitative Latent Space Phenotypes (LSPs) describing whole-plant architecture and biomass distribution. The LSPs had heritabilities of up to 0.44, similar to some manually measured traits, indicating they can be selected on or genetically mapped. Manually measured traits can be successfully predicted by using LSPs as explanatory variables in partial least squares regression, indicating the LSPs contain biologically relevant information about plant architecture. These techniques can be used to assess crop architecture at a reduced cost and in an automated fashion for breeding, research, or extension purposes, as well as to create or inform crop growth models.