KY
Ketian Yu
Author with expertise in Genomic Studies and Association Analyses
University of Michigan–Ann Arbor, The University of Texas Health Science Center at Houston, Statistical Research (United States)
+ 2 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
6
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis

Yuhua Zhang et al.May 7, 2020
+5
K
C
Y
Abstract Transcriptome-wide association studies (TWAS), an integrative framework using expression quantitative trait loci (eQTLs) to construct proxies for gene expression, have emerged as a promising method to investigate the biological mechanisms underlying associations between genotypes and complex traits. However, challenges remain in interpreting TWAS results, especially regarding their causality implications. In this paper, we describe a new computational framework, probabilistic TWAS (PTWAS), to detect associations and investigate causal relationships between gene expression and complex traits. We use established concepts and principles from instrumental variables (IV) analysis to delineate and address the unique challenges that arise in TWAS. PTWAS utilizes probabilistic eQTL annotations derived from multi-variant Bayesian fine-mapping analysis conferring higher power to detect TWAS associations than existing methods. Additionally, PTWAS provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type specific causal effects of gene expression on complex traits. These features make PTWAS uniquely suited for in-depth investigations of the biological mechanisms that contribute to complex trait variation. Using eQTL data across 49 tissues from GTEx v8, we apply PTWAS to analyze 114 complex traits using GWAS summary statistics from several large-scale projects, including the UK Biobank. Our analysis reveals an abundance of genes with strong evidence of eQTL-mediated causal effects on complex traits and highlights the heterogeneity and tissue-relevance of these effects across complex traits. We distribute software and eQTL annotations to enable users performing rigorous TWAS analysis by leveraging the full potentials of the latest GTEx multi-tissue eQTL data.
57

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al.Oct 24, 2023
+532
S
J
S
Abstract A major challenge of genome-wide association studies (GWAS) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations, and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels, and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. Two prioritized genes, CREBRF and RRBP1 , show convergent evidence across functional datasets supporting their roles in lipid biology.
0

Loss-of-function genomic variants with impact on liver-related blood traits highlight potential therapeutic targets for cardiovascular disease

Nielsen Jb et al.May 7, 2020
+99
I
O
N
Cardiovascular diseases (CVD), and in particular cerebrovascular and ischemic heart diseases, are leading causes of death globally. Lowering circulating lipids is an important treatment strategy to reduce risk. However, some pharmaceutical mechanisms of reducing CVD may increase risk of fatty liver disease or other metabolic disorders. To identify potential novel therapeutic targets, which may reduce risk of CVD without increasing risk of metabolic disease, we focused on the simultaneous evaluation of quantitative traits related to liver function and CVD. Using a combination of low-coverage (5x) whole-genome sequencing and targeted genotyping, deep genotype imputation based on the TOPMed reference pane, and genome-wide association study (GWAS) meta-analysis, we analyzed 12 liver-related blood traits (including liver enzymes, blood lipids, and markers of iron metabolism) in up to 203,476 people from three population-based cohorts of different ancestries. We identified 88 likely causal protein-altering variants that were associated with one or more liver-related blood traits. We identified several loss-of-function (LoF) variants reducing low-density lipoprotein cholesterol (LDL-C) or risk of CVD without increased risk of liver disease or diabetes, including variants in known lipid genes (e.g. APOB, LPL). A novel LoF variant, ZNF529:p.K405X, was associated with decreased levels of LDL-C (P=1.3x10-8) but demonstrated no association with liver enzymes or non-fasting blood glucose levels. Silencing of ZNF529 in human hepatocytes resulted in upregulation of LDL receptor (LDLR) and increased LDL-C uptake in the cells, suggesting that inhibition of ZNF529 or its gene product could be used for treating hypercholesterolemia and hence reduce the risk of CVD. Taken together, we demonstrate that simultaneous consideration of multiple phenotypes and a focus on rare protein-altering variants may identify promising therapeutic targets.