Abstract Background The prenatal period is a critical window to study factors involved in the development of autism spectrum disorder (ASD). Environmental factors, especially in utero nutrition, can interact with genetic risk for ASD, but how specific prenatal nutrients in mothers of children later diagnosed with ASD or non-typical development (Non-TD) associate with gestational gene expression is poorly understood. Maternal blood collected prospectively during pregnancy provides a new opportunity to gain insights into nutrition, particularly one-carbon metabolites, on gene pathways and neurodevelopment. Methods Genome-wide transcriptomes were measured using microarrays in 300 maternal blood samples from all three trimesters in the Markers of Autism Risk in Babies - Learning Early Signs (MARBLES) study. Sixteen different one-carbon metabolites, including folic acid, betaine, 5’-methyltretrahydrofolate (5-MeTHF), and dimethylglycine (DMG) were measured. Differential expression analysis and weighted gene correlation network analysis (WGCNA) were used to compare gene expression between children later diagnosed as typical development (TD), Non-TD and ASD, and to nutrient metabolites. Results Using differential gene expression analysis, six transcripts associated with four genes ( TGR-AS1, SQSTM1, HLA-C and RFESD ) showed genome-wide significance (FDR q < 0.05) with child outcomes. Genes nominally differentially expressed compared to TD specifically in ASD, but not Non-TD, significantly overlapped with seven high confidence ASD genes. 218 transcripts in common to ASD and Non-TD differential expression compared to TD were significantly enriched for functions in immune response to interferon-gamma, apoptosis, and metal ion transport. WGCNA identified co-expressed gene modules significantly correlated with 5-MeTHF, folic acid, DMG, and betaine. A module enriched in DNA methylation functions showed a protective association with folic acid/5-MeTHF concentrations and ASD risk. Independent of child outcome, maternal plasma betaine and DMG concentrations associated with a block of co-expressed genes enriched for adaptive immune, histone modification, and RNA processing functions. Limitations Blood contains a heterogeneous mixture of cell types, and many WGCNA modules correlated with cell type and/or nutrient concentrations, but not child outcome. Gestational age correlated with some co-expressed gene modules in addition to nutrients. Conclusions These results support the premise that the prenatal maternal blood transcriptome is a sensitive indicator of gestational nutrition and children’s later neurodevelopmental outcomes.