Abstract Urgent action is needed to prevent the demise of coral reefs as the climate crisis leads to an increasingly warmer and more acidic ocean. Propagating climate change resistant corals to restore degraded reefs is one promising strategy; however, empirical evidence is needed to determine if resistance is retained following transplantation within or beyond a coral’s natal reef. Here we assessed the performance of bleaching-resistant individuals of two coral species following reciprocal transplantation between environmentally distinct reefs (low vs high diel variability) to determine if stress resistance is retained following transplantation. Critically, transplantation to either environment had no influence on coral bleaching resistance, indicating that this trait was relatively fixed and is thus a useful metric for selecting corals for reef restoration within their native range. In contrast, growth was highly plastic, and native performance was not predictive of performance in the novel environment. Coral metabolism was also plastic, with cross transplants of both species matching the performance of native corals at both reefs within three months. Coral physiology (autotrophy, heterotrophy, and metabolism) and overall fitness (survival, growth, and reproduction) were higher at the reef with higher flow and fluctuations in diel pH and dissolved oxygen, and did not differ between native corals and cross-transplants. Conversely, cross-transplants at the low-variability reef had higher fitness than native corals, thus increasing overall fitness of the recipient population. This experiment was conducted during a non-bleaching year, which suggests that introduction of these bleaching-resistant individuals will provide even greater fitness benefits to recipient populations during bleaching years. In summary, this study demonstrates that propagating and transplanting bleaching-resistant corals can elevate the resistance of coral populations to ocean warming while simultaneously maintaining reef function as the climate crisis worsens.