CC
Chunmei Chang
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,035
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell

Kelly Wrighton et al.Sep 10, 2011
ABSTRACT Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c -type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction.
0
Citation224
0
Save
30

Structural Basis for Membrane Recruitment of ATG16L1 by WIPI2 in Autophagy

Lisa Strong et al.May 14, 2021
ABSTRACT Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12–5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12–5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven bladed β-propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 β-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12–5-16L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12–5-16L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand, and ATG8 lipidation on the other.
30
Citation1
0
Save
0

A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy

Dorotea Fracchiolla et al.Dec 18, 2019
Autophagy degrades cytoplasmic cargo by its delivery to lysosomes within double membrane autophagosomes. Synthesis of the phosphoinositide PI(3)P by the autophagic PI 3-kinase complex I (PI3KC3-C1) and conjugation of ATG8/LC3 proteins to phagophore membranes by the ATG12–ATG5-ATG16L1 (E3) complex are two critical steps in autophagosome biogenesis, connected by WIPI2. Here we present a complete reconstitution of these events. On giant unilamellar vesicles (GUVs), LC3 lipidation is strictly dependent on the recruitment of WIPI2, which in turn depends on PI(3)P. Ectopically targeting E3 to membranes in the absence of WIPI2 is insufficient to support LC3 lipidation, demonstrating that WIPI2 allosterically activates the E3 complex. PI3KC3-C1 and WIPI2 mutually promote the recruitment of each other in a positive feedback loop. When both PI 3-kinase and LC3 lipidation reactions were carried out simultaneously, positive feedback between PI3KC3-C1 and WIPI2 led to rapid LC3 lipidation with kinetics similar to those seen in cellular autophagosome formation.Summary Autophagy requires the synthesis of PI(3)P and the conjugation of LC3 to the phagophore membrane. We reconstituted these two reactions and their coupling by WIPI2, and showed that positive feedback between PI3KC3-C1 and WIPI2 leads to rapid LC3 lipidation by the ATG16L1 complex.* Abbreviations : (E3) : ATG12–ATG5-ATG16L1 (ATG) : Autophagy (PI3KC3-C1) : Class III phosphatidylinositol-3 kinase complex I (DO) : dioleoyl (GUV) : Giant Unilamellar Vesicle (LC3B) : Microtubule-associated proteins 1A/1B light chain 3B (PO) : palmitoyl-oleoyl (SUV) : Small Unilamellar Vesicle WIPI : (WD-repeat protein interacting with phosphoinositides)
1

Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy

Chunmei Chang et al.Jan 9, 2021
Abstract Selective autophagy of damaged mitochondria, intracellular pathogens, protein aggregates, endoplasmic reticulum, and other large cargoes is essential for health. The presence of cargo initiates phagophore biogenesis, which entails the conjugation of ATG8/LC3 family proteins to membrane phosphatidylethanolamine. Current models suggest that the presence of clustered ubiquitin chains on a cargo triggers a cascade of interactions from autophagic cargo receptors through the autophagy core complexes ULK1 and class III PI 3-kinase complex I (PI3KC3-C1), WIPI2, and the ATG7, ATG3, and ATG12-ATG5-ATG16L1 machinery of LC3 lipidation. This model was tested using giant unilamellar vesicles (GUVs), GST-Ub 4 as a model cargo, the cargo receptors NDP52, TAX1BP1, and OPTN, and the autophagy core complexes. All three cargo receptors potently stimulated LC3 lipidation on GUVs. NDP52- and TAX1BP1-induced LC3 lipidation required the ULK1 complex together with all other components, however, ULK1 kinase activity was dispensable. In contrast, OPTN bypassed the ULK1 requirement completely. These data show that the cargo-dependent stimulation of LC3 lipidation is a common property of multiple autophagic cargo receptors, yet the details of core complex engagement vary considerably and unexpectedly between the different receptors.