XT
Xin Teng
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
4,773
h-index:
21
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glucose feeds the TCA cycle via circulating lactate

Sheng Hui et al.Oct 18, 2017
Metabolic flux analysis in mice reveals that lactate often acts as the primary carbon source for the tricarboxylic acid cycle both in normal tissues and in tumour microenvironments. Glucose is thought to be the primary source of fuel for the tricarboxylic acid (TCA) cycle, also known as the citric acid cycle, which produces important metabolites and energy. Sheng Hui et al. now perform whole-body metabolite analysis in mice. They find that circulating lactate rather than glucose can be a major source of carbon and hence fuel for TCA metabolism in both fed and fasting mice. They furthermore show this to be the case in tumour tissue. Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues1 and tumours2,3,4,5. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.
0

Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis

Jessie Guo et al.Jul 1, 2013
Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 ( atg7 ) was deleted concurrently with K-ras G12D activation in mouse models for non-small-cell lung cancer (NSCLC). atg7 -deficient tumors accumulated dysfunctional mitochondria and prematurely induced p53 and proliferative arrest, which reduced tumor burden that was partly relieved by p53 deletion. atg7 loss altered tumor fate from adenomas and carcinomas to oncocytomas—rare, predominantly benign tumors characterized by the accumulation of defective mitochondria. Surprisingly, lipid accumulation occurred in atg7 -deficient tumors only when p53 was deleted. atg7 - and p53 -deficient tumor-derived cell lines (TDCLs) had compromised starvation survival and formed lipidic cysts instead of tumors, suggesting defective utilization of lipid stores. atg7 deficiency reduced fatty acid oxidation (FAO) and increased sensitivity to FAO inhibition, indicating that with p53 loss, Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. Thus, autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas. Moreover, cancers require autophagy for distinct roles in metabolism that are oncogene- and tumor suppressor gene-specific.
0
Citation550
0
Save
0

Autophagy Is Required for Glucose Homeostasis and Lung Tumor Maintenance

Gizem Karsli-Uzunbas et al.May 30, 2014
Abstract Macroautophagy (autophagy hereafter) recycles intracellular components to sustain mitochondrial metabolism that promotes the growth, stress tolerance, and malignancy of lung cancers, suggesting that autophagy inhibition may have antitumor activity. To assess the functional significance of autophagy in both normal and tumor tissue, we conditionally deleted the essential autophagy gene, autophagy related 7 (Atg7), throughout adult mice. Here, we report that systemic ATG7 ablation caused susceptibility to infection and neurodegeneration that limited survival to 2 to 3 months. Moreover, upon fasting, autophagy-deficient mice suffered fatal hypoglycemia. Prior autophagy ablation did not alter the efficiency of non–small cell lung cancer (NSCLC) initiation by activation of oncogenic KrasG12D and deletion of the Trp53 tumor suppressor. Acute autophagy ablation in mice with preexisting NSCLC, however, blocked tumor growth, promoted tumor cell death, and generated more benign disease (oncocytomas). This antitumor activity occurred before destruction of normal tissues, suggesting that acute autophagy inhibition may be therapeutically beneficial in cancer. Significance: We systemically ablated cellular self-cannibalization by autophagy in adult mice and determined that it is dispensable for short-term survival, but required to prevent fatal hypoglycemia and cachexia during fasting, delineating a new role for autophagy in metabolism. Importantly, acute, systemic autophagy ablation was selectively destructive to established tumors compared with normal tissues, thereby providing the preclinical evidence that strategies to inhibit autophagy may be therapeutically advantageous for RAS-driven cancers. Cancer Discov; 4(8); 914–27. ©2014 AACR. See related commentary by Amaravadi and Debnath, p. 873 This article is highlighted in the In This Issue feature, p. 855
0
Citation486
0
Save
0

Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway

Gregory Ducker et al.May 21, 2016
One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions.
0

Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells

Jessie Guo et al.Aug 1, 2016
Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras -driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient ( Atg7 −/− ) Kras -driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras -driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.
0
Citation320
0
Save