PF
Peter Frommolt
Author with expertise in ATP Synthase Function and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
1,980
h-index:
35
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions

Martin Sos et al.May 19, 2009
Somatic genetic alterations in cancers have been linked with response to targeted therapeutics by creation of specific dependency on activated oncogenic signaling pathways. However, no tools currently exist to systematically connect such genetic lesions to therapeutic vulnerability. We have therefore developed a genomics approach to identify lesions associated with therapeutically relevant oncogene dependency. Using integrated genomic profiling, we have demonstrated that the genomes of a large panel of human non-small cell lung cancer (NSCLC) cell lines are highly representative of those of primary NSCLC tumors. Using cell-based compound screening coupled with diverse computational approaches to integrate orthogonal genomic and biochemical data sets, we identified molecular and genomic predictors of therapeutic response to clinically relevant compounds. Using this approach, we showed that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations confer enhanced Hsp90 dependency and validated this finding in mice with KRAS-driven lung adenocarcinoma, as these mice exhibited dramatic tumor regression when treated with an Hsp90 inhibitor. In addition, we found that cells with copy number enhancement of v-abl Abelson murine leukemia viral oncogene homolog 2 (ABL2) and ephrin receptor kinase and v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) kinase family genes were exquisitely sensitive to treatment with the SRC/ABL inhibitor dasatinib, both in vitro and when it xenografted into mice. Thus, genomically annotated cell-line collections may help translate cancer genomics information into clinical practice by defining critical pathway dependencies amenable to therapeutic inhibition.
0
Citation265
0
Save
0

CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly

Muhammad Hussain et al.Aug 4, 2013
Autosomal recessive primary microcephaly (MCPH) is characterized by reduced head circumference, reduction in the size of the cerebral cortex with otherwise grossly normal brain structure and variable intellectual disability. MCPH is caused by mutations of 11 different genes which code for proteins implicated in cell division and cell cycle regulation. We studied a consanguineous eight-generation family from Pakistan with ten microcephalic children using homozygosity mapping and found a new MCPH locus at HSA 7q21.11-q21.3. Sanger sequencing of the most relevant candidate genes in this region revealed a homozygous single nucleotide substitution c.589G>A in CDK6, which encodes cyclin-dependent kinase 6. The mutation changes a highly conserved alanine at position 197 into threonine (p.Ala197Thr). Post hoc whole-exome sequencing corroborated this mutation's identification as the causal variant. CDK6 is an important protein for the control of the cell cycle and differentiation of various cell types. We show here for the first time that CDK6 associates with the centrosome during mitosis; however, this was not observed in patient fibroblasts. Moreover, the mutant primary fibroblasts exhibited supernumerary centrosomes, disorganized microtubules and mitotic spindles, an increased centrosome nucleus distance, reduced cell proliferation and impaired cell motility and polarity. Upon ectopic expression of the mutant protein and knockdown of CDK6 through shRNA, we noted similar effects. We propose that the identified CDK6 mutation leads to reduced cell proliferation and impairs the correct functioning of the centrosome in microtubule organization and its positioning near the nucleus which are key determinants during neurogenesis.
0
Citation109
0
Save
7

S. Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense

Saray Gutiérrez et al.Jan 15, 2021
Abstract Regulation of the cellular metabolism is now recognized as a crucial mechanism for the homeostasis of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. However, despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium ( S . Typhimurium) infections. Importantly, our results suggested that S . Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolytic enzyme aldolase A is critical for v-ATPase assembly and the acidification of phagosomes upon S . Typhimurium infection, and impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in macrophages. Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S . Typhimurium to evade cell-autonomous defense.
27

Cold-induced expression of a truncated Adenylyl Cyclase 3 acts as rheostat to brown fat function

Sajjad Khani et al.Aug 1, 2022
Abstract Promoting brown adipose tissue (BAT) activity has been recognized as innovative therapeutic approach to improve obesity and metabolic disease. Whilst the molecular circuitry underlying thermogenic activation of BAT is well understood, the processes underlying rheostatic regulation of BAT to maintain homeostasis and avoid excessive energy dissipation remain ill-defined. Increasing cyclic AMP (cAMP) biosynthesis is key for BAT activation. Here, we demonstrate that ADCY3, an adenylyl cyclase whose expression is induced during cold exposure and regulates cAMP homeostasis in thermogenic fat, is dispensable for BAT function in lean mice, but becomes critical during obesity. Furthermore, by combining RNA-seq with epigenomic H3K4me3 profiling, we detected a novel, cold-inducible promoter that generates a 5’ truncated Adcy3-at mRNA isoform, Adcy3-at . Mice lacking only Adcy3-at , but not full-length Adcy3 , displayed increased energy expenditure already under lean conditions and were protected against obesity and ensuing metabolic imbalances. Subcellularly, translated ADCY3-AT proteins are retained in the endoplasmic reticulum (ER), did not translocate to the cell membrane, and lacked enzymatic activity. By interacting with ADCY3, ADCY3-AT retained ADCY3 in the ER and, thereby, reduced the plasma membrane pool of ADCYs available for G-protein mediated cAMP synthesis. Thereby, ADCY3-AT acts as a signaling rheostat in BAT, limiting adverse consequences of uncurbed cAMP activity after long-term BAT activation. Adcy3-at induction was driven by a cold-induced, truncated isoform of the transcriptional cofactor PPARGC1A (PPARG Coactivator 1 Alpha, PPARGC1A-AT). Expression of Ppargc1a-at and Adcy3-at are evolutionary conserved, indicating that transcriptional rewiring by commissioning of alternative promoters is key for thermogenic fat function.
Load More