RM
Rani Moons
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
5
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
34

The role of water mobility in protein misfolding

Amberley Stephens et al.Jan 9, 2021
Abstract The propensity for intrinsically disordered proteins to aggregate is heavily influenced by their surrounding environment. Here, we show that the mobility of the surrounding water molecules directly influences the aggregation rate of α-synuclein (aSyn), a protein associated with Parkinson’s disease. We observe that the addition of NaCl reduces the mobility of water, while addition of CsI increases the mobility of water. In turn, this reduces and increases the mobility of aSyn, respectively, given the change in strength and lifetime of the intermolecular forces. The reduction of aSyn mobility in the presence of NaCl ions leads to increased aggregation rates, which may be due to aggregation-competent conformations being stable for longer, thereby increasing the likelihood of establishing interactions between two adjacent monomers. In contrast, aSyn is more mobile when CsI is dissolved in the aqueous phase which leads to a reduction of successful monomeric interactions. We thus highlight the importance of the surrounding environment and describe how ion content can influence water mobility and the misfolding rate of amyloidogenic proteins, such as aSyn. By modulating the cellular environment to increase water mobility or finding small molecules to increase protein dynamics, new therapeutic targets may be found.
34
Citation1
0
Save
0

Extent of N-terminus exposure by altered long-range interactions of monomeric alpha-synuclein determines its aggregation propensity

Amberley Stephens et al.Aug 20, 2019
As an intrinsically disordered protein, monomeric alpha synuclein (aSyn) constantly reconfigures and probes the conformational space. Long-range interactions across the protein maintain its solubility and mediate this dynamic flexibility, but also provide residual structure. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. By using calcium to perturb the conformational ensemble, we observe differences in structure and intra-molecular dynamics between two aSyn C-terminal variants, D121A and pS129, and the aSyn familial disease mutants, A30P, E46K, H50Q, G51D, A53T and A53E, compared to wild-type (WT) aSyn. We observe that the more exposed the N-terminus and the beginning of the NAC region are, the more aggregation prone monomeric aSyn conformations become. N-terminus exposure occurs upon release of C-terminus interactions when calcium binds, but the level of exposure is specific to the aSyn mutation present. There was no correlation between single charge alterations, calcium affinity, or the number of ions bound on aSyn's aggregation propensity, indicating that sequence or post-translation modification (PTM)-specific conformational differences between the N- and C-termini and the specific local environment mediate aggregation propensity instead. Understanding aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein, to stabilise aSyn in non-aggregation prone conformations, by either preserving long-range interactions between the N- and C-termini or by protecting the N-terminus from exposure.