RH
R Hardison
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
47
(57% Open Access)
Cited by:
19,624
h-index:
85
/
i10-index:
230
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Initial sequencing and comparative analysis of the mouse genome

R Waterston et al.Dec 1, 2002
+224
T
K
R
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.
4
Citation6,913
1
Save
0

The isolation of structural genes from libraries of eucaryotic DNA

Tom Maniatis et al.Oct 1, 1978
+5
E
R
T
We present a procedure for eucaryotic structural gene isolation which involves the construction and screening of cloned libraries of genomic DNA. Large random DNA fragments are joined to phage lambda vectors by using synthetic DNA linkers. The recombinant molecules are packaged into viable phage particles in vitro and amplified to establish a permanent library. We isolated structural genes together with their associated sequences from three libraries constructed from Drosophila, silkmoth and rabbit genomic DNA. In particular, we obtained a large number of phage recombinants bearing the chorion gene sequence from the silkmoth library and several independent clones of beta-globin genes from the rabbit library. Restriction mapping and hybridization studies reveal the presence of closely linked beta-globin genes.
0
Citation1,876
0
Save
0

Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner

Mathieu Blanchette et al.Apr 1, 2004
+9
R
W
M
We define a "threaded blockset," which is a novel generalization of the classic notion of a multiple alignment. A new computer program called TBA (for "threaded blockset aligner") builds a threaded blockset under the assumption that all matching segments occur in the same order and orientation in the given sequences; inversions and duplications are not addressed. TBA is designed to be appropriate for aligning many, but by no means all, megabase-sized regions of multiple mammalian genomes. The output of TBA can be projected onto any genome chosen as a reference, thus guaranteeing that different projections present consistent predictions of which genomic positions are orthologous. This capability is illustrated using a new visualization tool to view TBA-generated alignments of vertebrate Hox clusters from both the mammalian and fish perspectives. Experimental evaluation of alignment quality, using a program that simulates evolutionary change in genomic sequences, indicates that TBA is more accurate than earlier programs. To perform the dynamic-programming alignment step, TBA runs a stand-alone program called MULTIZ, which can be used to align highly rearranged or incompletely sequenced genomes. We describe our use of MULTIZ to produce the whole-genome multiple alignments at the Santa Cruz Genome Browser.
0
Citation1,452
0
Save
0

Evolutionary and Biomedical Insights from the Rhesus Macaque Genome

Richard Gibbs et al.Apr 12, 2007
+96
M
J
R
The rhesus macaque ( Macaca mulatta ) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
0
Citation1,352
0
Save
0

Human–Mouse Alignments with BLASTZ

Scott Schwartz et al.Dec 30, 2002
+5
A
W
S
The Mouse Genome Analysis Consortium aligned the human and mouse genome sequences for a variety of purposes, using alignment programs that suited the various needs. For investigating issues regarding genome evolution, a particularly sensitive method was needed to permit alignment of a large proportion of the neutrally evolving regions. We selected a program called BLASTZ, an independent implementation of the Gapped BLAST algorithm specifically designed for aligning two long genomic sequences. BLASTZ was subsequently modified, both to attain efficiency adequate for aligning entire mammalian genomes and to increase its sensitivity. This work describes BLASTZ, its modifications, the hardware environment on which we run it, and several empirical studies to validate its results.
0
Citation1,243
0
Save
0

PipMaker—A Web Server for Aligning Two Genomic DNA Sequences

Scott Schwartz et al.Apr 1, 2000
+5
K
Z
S
PipMaker ( http://bio.cse.psu.edu ) is a World-Wide Web site for comparing two long DNA sequences to identify conserved segments and for producing informative, high-resolution displays of the resulting alignments. One display is a percent identity plot (pip), which shows both the position in one sequence and the degree of similarity for each aligning segment between the two sequences in a compact and easily understandable form. Positions along the horizontal axis can be labeled with features such as exons of genes and repetitive elements, and colors can be used to clarify and enhance the display. The web site also provides a plot of the locations of those segments in both species (similar to a dot plot). PipMaker is appropriate for comparing genomic sequences from any two related species, although the types of information that can be inferred (e.g., protein-coding regions and cis -regulatory elements) depend on the level of conservation and the time and divergence rate since the separation of the species. Gene regulatory elements are often detectable as similar, noncoding sequences in species that diverged as much as 100–300 million years ago, such as humans and mice, Caenorhabditis elegans and C. briggsae , or Escherichia coli and Salmonella spp. PipMaker supports analysis of unfinished or “working draft” sequences by permitting one of the two sequences to be in unoriented and unordered contigs.
0
Citation1,182
0
Save
0

Topologically associating domains are stable units of replication-timing regulation

Benjamin Pope et al.Nov 18, 2014
+18
V
T
B
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
0

Genome analysis of the platypus reveals unique signatures of evolution

Wesley Warren et al.May 1, 2008
+97
J
L
W
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. The duck-billed platypus (Ornithorhynchus anatinus) is a unique egg-laying mammal, with lactation, venom and a bill. It even has an electro­sensory system for foraging underwater. Platypuses are monotremes descended from the most basal branch of the mammalian lineage and combine aspects of both reptilian and mammalian biology. Now an international consortium reports the sequence and analysis of the platypus genome. It is an amalgam of reptilian, mammalian and its own unique characteristics that provides clues to the function and evolution of all mammalian genomes. As well as helping uncover the origins of genomic imprinting, analyses show that platypus and reptile venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved; and immune gene family expansions are directly related to platypus biology. The sequence provides an invaluable resource for comparative genomics, and it will be important for monotreme conservation. The cover image shows the bill with electro­sensory pits, eye and ear opening behind the eye. Platypuses are monotremes and combine aspects of both reptilian and mammalian behaviour. An international consortium reports the genome sequence and analysis of Ornithorhynchus anatinus and as expected, parts of the genome look more like mammals, whereas other parts more like reptiles or even chickens.
0
Citation703
0
Save
0

Integrative annotation of chromatin elements from ENCODE data

Michael Hoffman et al.Dec 5, 2012
+11
S
J
M
The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.
0
Citation565
0
Save
0

Complete Khoisan and Bantu genomes from southern Africa

Stephan Schuster et al.Feb 1, 2010
+44
A
W
S
The complete genome sequences of an indigenous hunter-gatherer from Namibia's Kalahari Desert and of a Bantu from South Africa are presented in this issue, together with protein-coding regions from three other hunter-gatherer groups from the Kalahari. Analysis of genetic variance in what is probably the oldest known modern human lineage will contribute to understanding human diversity, and facilitate the inclusion of southern Africans in medical genomics research projects. Initial observations from the data include the fact that the Bushmen seem more different from each other, in terms of nucleotide substitutions, than typical Asians and Europeans. More speculatively, variants between these genomes and the existing data sets may point to genetic adaptations for an agricultural lifestyle. Until now, fully sequenced human genomes of the indigenous hunter-gatherer peoples of southern Africa have been limited to recently diverged populations. The complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from southern Africa are now presented. The extent of whole-genome and exome diversity is characterized; the observed genomic differences may help to pinpoint genetic adaptations to an agricultural lifestyle. The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial1 and small sets of nuclear markers2 have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans1,3. However, until now, fully sequenced human genomes have been limited to recently diverged populations4,5,6,7,8. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.
0
Citation493
0
Save
Load More