KC
Katharina Correa
Author with expertise in Genomic Selection in Plant and Animal Breeding
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
0
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-Wide Association Study And Genomic Predictions For Resistance Against Piscirickettsia salmonis In Coho Salmon (Oncorhynchus kisutch) Using ddRAD Sequencing

Agustín Barría et al.Apr 4, 2017
Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming. Current treatments have been ineffective for the control of the disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) which were experimentally challenged against P. salmonis were sequenced using ddRAD sequencing. A total of 4,174 SNP markers were identified in the population. These markers were used to perform a GWAS and testing genomic selection models. One SNP related with iron availability was genome-wide significantly associated with resistance to P. salmonis defined as day of death. Genomic selection models showed similar accuracies and predictive abilities than traditional pedigree-based best linear unbiased prediction (PBLUP) method.
0

Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus)

Grazyella Yoshida et al.Jan 13, 2019
Nile tilapia (Oreochromis niloticus) is one of the most produced farmed fish in the world and represents an important source of protein for human consumption. Farmed Nile tilapia populations are increasingly based on genetically improved stocks, which have been established from admixed populations. To date, there is scarce information about the population genomics of farmed Nile tilapia, assessed by dense single nucleotide polymorphism (SNP) panels. The patterns of linkage disequilibrium (LD) may affect the success of genome-wide association studies (GWAS) and genomic selection and can also provide key information about demographic history of farmed Nile tilapia populations. The objectives of this study were to provide further knowledge about the population structure and LD patterns, as well as, estimate the effective population size (Ne) for three farmed Nile tilapia populations, one from Brazil (POP A) and two from Costa Rica (POP B and POP C). A total of 55, 56 and 57 individuals from POP A, POP B and POP C, respectively, were genotyped using a 50K SNP panel selected from a whole-genome sequencing (WGS) experiment. Two principal components explained about 20% of the total variation and clearly discriminated between the three populations. Population genetic structure analysis showed evidence of admixture, especially for POP C. The contemporary Ne values calculated based to LD values, ranged from 71 to 141. No differences were observed in the LD decay among populations, with a rapid decrease of r2 when increasing inter-marker distance. Average r2 between adjacent SNP pairs ranged from 0.03 to 0.18, 0.03 to 0.17 and 0.03 to 0.16 for POP A, POP B and POP C, respectively. Based on the number of independent chromosome segments in the Nile tilapia genome, at least 4.2 K SNP are required for the implementation of GWAS and genomic selection in farmed Nile tilapia populations.
0

Comparative genomic analysis of three salmonid species identifies functional candidate genes involved in resistance to the intracellular bacteria Piscirickettsia salmonis

José Yáñez et al.Mar 27, 2019
Piscirickettsia salmonis is the etiological agent of Salmon Rickettsial Syndrome (SRS), and is responsible for considerable economic losses in salmon aquaculture. The bacteria affect coho salmon (CS) (Oncorhynchus kisutch), Atlantic salmon (AS) (Salmo salar) and rainbow trout (RT) (Oncorhynchus mykiss) in several countries, including: Norway, Canada, Scotland, Ireland and Chile. We used Bayesian genome-wide association (GWAS) analyses to investigate the genetic architecture of resistance to P. salmonis in farmed populations of these species. Resistance to SRS was defined as the number of days to death (DD) and as binary survival (BS). A total of 828 CS, 2,130 RT and 2,601 AS individuals were phenotyped and then genotyped using ddRAD sequencing, 57K SNP Affymetrix® Axiom® and 50K Affymetrix® Axiom® SNP panels, respectively. Both trait of SRS resistance in CS and RT, appeared to be under oligogenic control. In AS there was evidence of polygenic control of SRS resistance. To identify candidate genes associated with resistance, we applied a comparative genomics approach in which we systematically explored the complete set of genes adjacent to SNPs which explained more than 1% of the genetic variance of resistance in each salmonid species (533 genes in total). Thus, genes were classified based on the following criteria: i) shared function of their protein domains among species, ii) shared orthology among species, iii) proximity to the SNP explaining the highest proportion of the genetic variance and, iv) presence in more than one genomic region explaining more than 1% of the genetic variance within species. Our results allowed us to identify 120 candidate genes belonging to at least one of the four criteria described above. Of these, 21 of them were part of at least two of the criteria defined above and are suggested to be strong functional candidates influencing P. salmonis resistance. These genes are related to diverse biological processes, such as: kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation and innate immune response, which seem essential in the host response against P. salmonis infection. These results provide fundamental knowledge on the potential functional genes underpinning resistance against P. salmonis in three salmonid species.
0

Genome-wide association study and low-cost genomic predictions for growth and fillet yield in Nile tilapia (Oreochromis niloticus)

Grazyella Yoshida et al.Mar 9, 2019
Fillet yield (FY) and harvest weight (HW) are economically important traits in Nile tilapia production. Genetic improvement of these traits, especially for FY, are lacking, due to the absence of efficient methods to measure the traits without sacrificing fish and the use of information from relatives to selection. However, genomic information could be used by genomic selection to improve traits that are difficult to measure directly in selection candidates, as in the case of FY. The objectives of this study were: (i) to perform genome-wide association studies (GWAS) to dissect the genetic architecture of FY and HW, (ii) to evaluate the accuracy of genotype imputation and (iii) to assess the accuracy of genomic selection using true and imputed low-density (LD) single nucleotide polymorphism (SNP) panels to determine a cost-effective strategy for practical implementation of genomic information in tilapia breeding programs. The data set consisted of 5,866 phenotyped animals and 1,238 genotyped animals (108 parents and 1,130 offspring) using a 50K SNP panel. The GWAS were performed using all genotyped and phenotyped animals. The genotyped imputation was performed from LD panels (LD0.5K, LD1K and LD3K) to high-density panel (HD), using information from parents and 20% of offspring in the reference set and the remaining 80% in the validation set. In addition, we tested the accuracy of genomic selection using true and imputed genotypes comparing the accuracy obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions. The results from GWAS supports evidence of the polygenic nature of FY and HW. The accuracy of imputation ranged from 0.90 to 0.98 for LD0.5K and LD3K, respectively. The accuracy of genomic prediction outperformed the estimated breeding value from PBLUP. The use of imputation for genomic selection resulted in an increased relative accuracy independent of the trait and LD panel analyzed. The present results suggest that genotype imputation could be a cost-effective strategy for genomic selection in tilapia breeding programs.
0

Genome-scale comparative analysis for host resistance against sea lice between Atlantic salmon and rainbow trout

Pablo Cáceres et al.Apr 30, 2019
Sea lice (Caligus rogercresseyi) are ectoparasites that cause major production losses in the salmon aquaculture industry worldwide. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two of the most susceptible salmonid species to sea lice infestation. The goal of this study was to identify common candidate genes involved in resistance against sea lice. For this, 2,626 Atlantic salmon and 2,643 rainbow trout from breeding populations were challenged with sea lice and genotyped with a 50k and 57k SNP panel. We ran two independent genome-wide association studies for sea lice resistance on each species and identified 7 and 13 windows explaining 3% and 2.7% respectively the genetic variance. Heritabilities were observed with values of 0.19 for salmon and 0.08 for trout. We identified genes associated with immune responses, cytoskeletal factors and cell migration. We found 15 orthogroups which allowed us to identify dust8 and dust10 as candidate genes in orthogroup 13. This suggests that similar mechanisms can regulate resistance in different species; however, they most likely do not share the same standing variation within the genomic regions and genes that regulate resistance. Our results provide further knowledge and may help establish better control for sea lice in fish populations.