The X-ray crystal structure of the M2 muscarinic acetylcholine receptor, which is essential for the physiological control of cardiovascular function, is reported. The muscarinic acetylcholine receptors (mAChRs) constitute a family of G-protein-coupled receptors. These membrane proteins are targets for treatment of a broad range of conditions, including Alzheimer's disease, schizophrenia and chronic obstructive pulmonary disease. The five mAChR subtypes (M1–M5) share a high degree of sequence homology, but show marked differences in G-protein-coupling preference and physiological function. This pair of papers from Brian Kobilka's group presents the structures of two of the five subtypes. Haga et al. report the X-ray crystal structure of the M2 receptor, which is essential for the physiological control of cardiovascular function; Kruse et al. determine the structure of the M3 receptor, active in the bronchial airways and elsewhere. Comparison of the two structures reveals key differences that could potentially be exploited to develop subtype-selective drugs. The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves1,2,3,4,5. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.