MA
Michael Abrams
Author with expertise in Evolution and Diversity of Cnidarians and Jellyfish Blooms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,834
h-index:
58
/
i10-index:
133
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In vivo detection and imaging of phosphatidylserine expression during programmed cell death

Francis Blankenberg et al.May 26, 1998
One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo . After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death.
0

ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD)

Michael Abrams et al.Apr 4, 2020
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-channel imaging instrument operating on NASA’s Terra satellite since 1999. ASTER’s visible–near infrared (VNIR) instrument, with three bands and a 15 m Instantaneous field of view (IFOV), is accompanied by an additional band using a second, backward-looking telescope. Collecting along-track stereo pairs, the geometry produces a base-to-height ratio of 0.6. In August 2019, the ASTER Science Team released Version 3 of the global DEM (GDEM) based on stereo correlation of 1.8 million ASTER scenes. The DEM has 1 arc-second latitude and longitude postings (~30 m) and employed cloud masking to avoid cloud-contaminated pixels. Custom software was developed to reduce or eliminate artifacts found in earlier GDEM versions, and to fill holes due to the masking. Each 1×1 degree GDEM tile was manually inspected to verify the completeness of the anomaly removal, which was generally excellent except across some large ice sheets. The GDEM covers all of the Earth’s land surface from 83 degrees north to 83 degrees south latitude. This is a unique, global high spatial resolution digital elevation dataset available to all users at no cost. In addition, a second unique dataset was produced and released. The raster-based ASTER Global Water Body Dataset (ASTWBD) identifies the presence of permanent water bodies, and marks them as ocean, lake, or river. An accompanying DEM file indicates the elevation for each water pixel. To date, over 100 million 1×1 degree GDEM tiles have been distributed.
0
Paper
Citation286
0
Save
19

Sleep is required for neural network plasticity in the jellyfishCassiopea

Michael Abrams et al.May 5, 2023
Abstract Sleep in animals plays roles that appear specific to the brain, including synaptic homeostasis [1], neurotransmitter regulation [2], cellular repair [3], memory consolidation [4], and neural plasticity [5,6]. Would any of these functions of sleep be relevant to an animal without a brain? The upside-down jellyfish Cassiopea xamachana , like other cnidarians, lacks a centralized nervous system, yet the animal sleeps [7]. By tracking the propensity of the radially spaced ganglia to initiate muscle contractions over several days we determined how neural activity changes between sleep and wake in a decentralized nervous system. Ganglia-network sleep/ wake activity patterns range from being highly specialized to a few ganglia, to being completely unspecialized. Ganglia specialization also changes over time, indicating a high degree of plasticity in the neural network. The ganglia that lead activity can persist or switch between sleep/wake transitions, signifying a level of local control of the behavioral state in a decentralized nervous system. Following sleep deprivation, ganglia usage becomes far more sleep specialized, demonstrating reduced network plasticity. Together, these findings identify a novel behavioral control system that is decentralized and yet displays temporal specialization and centralization, and show a role for sleep in maintaining neural network plasticity, revealing a conserved function of sleep in this brain-less animal.
19
0
Save