MS
Michael Stadler
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
389
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos

Mustafa Mir et al.Dec 27, 2018
The regulation of transcription requires the coordination of numerous activities on DNA, yet how transcription factors mediate these activities remains poorly understood. Here, we use lattice light-sheet microscopy to integrate single-molecule and high-speed 4D imaging in developing Drosophila embryos to study the nuclear organization and interactions of the key transcription factors Zelda and Bicoid. In contrast to previous studies suggesting stable, cooperative binding, we show that both factors interact with DNA with surprisingly high off-rates. We find that both factors form dynamic subnuclear hubs, and that Bicoid binding is enriched within Zelda hubs. Remarkably, these hubs are both short lived and interact only transiently with sites of active Bicoid-dependent transcription. Based on our observations, we hypothesize that, beyond simply forming bridges between DNA and the transcription machinery, transcription factors can organize other proteins into hubs that transiently drive multiple activities at their gene targets.This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
0
Citation186
0
Save
1

Localization of the pioneer factor GAF to subnuclear foci is driven by DNA binding and required to silence satellite repeat expression

Marissa Gaskill et al.Nov 29, 2022
Abstract/Summary The eukaryotic genome is organized to enable the precise regulation of gene expression required for development. This organization is established during early development when the embryo transitions from a fertilized germ cell to the totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early embryonic development in Drosophila. GAF transcriptionally activates the zygotic genome and is localized to subnuclear foci. We show that this non-uniform distribution is driven by binding to the highly abundant GA-satellite repeats. At GA-repeats, GAF is necessary to form heterochromatin and silence transcription. Thus, GAF is required to establish both active and silent regions. We propose that foci formation enables GAF to have opposing transcriptional roles within a single nucleus. Our data support a model in which modulation of the subnuclear concentration of transcription factors acts to organize the nucleus into functionally distinct domains that are essential for the robust regulation of gene expression.
1
Citation1
0
Save
0

A chromatin extension model for insulator function based on comparison of high-resolution chromatin conformation capture and polytene banding maps

Michael Stadler et al.Apr 21, 2017
Insulator proteins bind to specific genomic loci and have been shown to play a role in partitioning genomes into independent domains of gene expression and chromatin structure. Despite decades of study, the mechanism by which insulators establish these domains remains elusive. Here, we use genome-wide chromatin conformation capture (Hi-C) to generate a high- resolution map of spatial interactions of chromatin from Drosophila melanogaster embryos. We show that from the earliest stages of development the genome is divided into distinct topologically associated domains (TADs), that we can map the boundaries between TADs to sub- kilobase resolution, and that these boundaries correspond to 500-2000 bp insulator elements. Comparing this map with a detailed assessment of the banding pattern of a region of a polytene chromosome, we show that these insulator elements correspond to low density polytene interbands that divide compacted bands, which correspond to TADs. It has been previously shown that polytene interbands have low packing ratios allowing the conversion of small genomic distances (in base pairs) into a large physical distances. We therefore suggest a simple mechanism for insulator function whereby insulators increase the physical space between adjacent domains via the unpacking and extension of intervening chromatin. This model provides an intuitive explanation for known features of insulators, including the ability to block enhancer- promoter interactions, limit the spread of heterochromatin, and organize the structural features of interphase chromosomes.
0

Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo

Michael Stadler et al.Jun 13, 2017
Evidence has emerged in recent years linking insulators and the proteins that bind them to the higher order structure of animal chromatin, but the precise nature of this relationship and the manner by which insulators influence chromatin structure have remained elusive. Here we present high-resolution genome-wide chromatin conformation capture (Hi-C) data from early Drosophila melanogaster embryos that allow us to map three-dimensional interactions to 500 base pairs. We observe a complex, nested pattern of regions of chromatin self-association, and use a combination of computational and manual annotation to identify boundaries between these topological associated domains (TADs). We demonstrate that, when mapped at high resolution, boundaries resemble classical insulators: short (500-1000 bp) genomic regions that are sensitive to DNase digestion and strongly bound by known insulator proteins. Strikingly, we show that for regions where the banding pattern of polytene chromosomes has been mapped to genomic position at comparably high resolution, there is a perfect correspondence between polytene banding and our chromatin conformation maps, with boundary insulators forming the interband regions that separate compacted bands that correspond to TADs. We propose that this precise, high-resolution relationship between insulators and TADs on the one hand and polytene bands and interbands on the other extends across the genome, and suggest a model in which the decompaction of insulator regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains.
1

Single-nucleus RNA-sequencing in pre-cellularizationDrosophila melanogasterembryos

Ashley Albright et al.Aug 13, 2021
Abstract Our current understanding of the regulation of gene expression in the early Drosophila melanogaster embryo comes from observations of a few genes at a time, as with in situ hybridizations, or observation of gene expression levels without regards to patterning, as with RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new insights into the regulation of gene expression for many genes at once while simultaneously retaining information regarding the position of each nucleus prior to dissociation based on patterned gene expression. In order to establish the practicality of single-nucleus RNA sequencing in the context of a real biological question, here we look at the difference in gene expression between control and an insulator protein, dCTCF, maternal null embryos during zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be grouped into distinct clusters according to gene expression. From both virtual and published in situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo. Lastly, we present multiple examples of differential gene expression between control and maternal CTCF null nuclei in one or more clusters, but not in bulk when grouping expression across all nuclei. These results highlight the potential for single-nucleus RNA-sequencing to reveal new insights into the regulation of gene expression in the early Drosophila melanogaster embryo.