DE
David Everman
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
816
h-index:
31
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Mosaic Activating Mutation inAKT1Associated with the Proteus Syndrome

Marjorie Lindhurst et al.Jul 27, 2011
+37
J
J
M
The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state.
0
Citation809
0
Save
1

Enabling the clinical application of artificial intelligence in genomics: a perspective of the AMIA Genomics and Translational Bioinformatics Workgroup

Nephi Walton et al.Nov 30, 2023
+18
C
R
N
Abstract Objective Given the importance AI in genomics and its potential impact on human health, the American Medical Informatics Association—Genomics and Translational Biomedical Informatics (GenTBI) Workgroup developed this assessment of factors that can further enable the clinical application of AI in this space. Process A list of relevant factors was developed through GenTBI workgroup discussions in multiple in-person and online meetings, along with review of pertinent publications. This list was then summarized and reviewed to achieve consensus among the group members. Conclusions Substantial informatics research and development are needed to fully realize the clinical potential of such technologies. The development of larger datasets is crucial to emulating the success AI is achieving in other domains. It is important that AI methods do not exacerbate existing socio-economic, racial, and ethnic disparities. Genomic data standards are critical to effectively scale such technologies across institutions. With so much uncertainty, complexity and novelty in genomics and medicine, and with an evolving regulatory environment, the current focus should be on using these technologies in an interface with clinicians that emphasizes the value each brings to clinical decision-making.
1
Citation4
0
Save
10

Structural model of PORCN illuminates disease-associated variants and drug binding sites

Jia Yu et al.Jul 19, 2021
+5
W
P
J
ABSTRACT Wnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers. Here, based on homology to mammalian MBOAT proteins we develop and validate a molecular structural model of PORCN. The model accommodates palmitoleoyl-CoA and Wnt hairpin 2 in two tunnels in the conserved catalytic core, shedding light on the catalytic mechanism. The model predicts how previously uncharacterized human variants of uncertain significance can alter PORCN function. Drugs including ETC-159, IWP-L6 and LGK-974 dock in the PORCN catalytic site, providing insights into PORCN pharmacologic inhibition. This structural model provides mechanistic insights into PORCN substrate recognition and catalysis as well as the inhibition of its enzymatic activity and can facilitate the development of improved inhibitors and the understanding of disease relevant PORCN mutants.
0

A Neurodevelopmental Disorder Caused by Mutations in the VPS51 Subunit of the GARP and EARP Complexes

David Gershlick et al.Sep 9, 2018
+3
J
M
D
GARP and EARP are related heterotetrameric protein complexes that associate with the cytosolic face of the trans-Golgi network and recycling endosomes, respectively. At these locations, GARP and EARP function to promote the fusion of endosome-derived transport carriers with their corresponding compartments. GARP and EARP share three subunits, VPS51, VPS52 and VPS53, and each has an additional complex-specific subunit, VPS54 or VPS50, respectively. The role of these complexes in human physiology, however, remains poorly understood. By exome sequencing, we have identified compound heterozygous mutations in the gene encoding the shared GARP/EARP subunit VPS51 in a six-year-old patient with severe global developmental delay, microcephaly, hypotonia, epilepsy, cortical vision impairment, pontocerebellar abnormalities, failure to thrive, liver dysfunction, lower extremity edema and dysmorphic features. The mutation in one allele causes a frameshift that produces a longer but highly unstable protein that is degraded by the proteasome. In contrast, the other mutant allele produces a protein with a single amino-acid substitution that is stable but assembles less efficiently with the other GARP/EARP subunits. Consequently, skin fibroblasts from the patient have reduced levels of fully-assembled GARP and EARP complexes. Likely because of this deficiency, the patient's fibroblasts display altered distribution of the cation-independent mannose 6-phosphate receptor, which normally sorts acid hydrolases to lysosomes. Furthermore, a fraction of the patient's fibroblasts exhibit swelling of lysosomes. These findings thus identify a novel genetic locus for a neurodevelopmental disorder and highlight the critical importance of GARP/EARP function in cellular and organismal physiology.
0

MEF2C hypofunction in neuronal and neuroimmune populations cooperate to produce MEF2C haploinsufficiency syndrome-like behaviors in mice

Adam Harrington et al.Oct 30, 2019
+12
K
C
A
Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). Here, we show that MCHS-associated missense mutations cluster in the conserved DNA binding domain and disrupt MEF2C DNA binding. DNA binding-deficient global Mef2c heterozygous mice (Mef2c-Het) display numerous MCHS-like behaviors, including autism-related behaviors, as well as deficits in cortical excitatory synaptic transmission. We find that hundreds of genes are dysregulated in Mef2c-Het cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observe an enrichment of upregulated microglial genes, but not due to neuroinflammation in the Mef2c-Het cortex. Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduces a subset of the Mef2c-Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduces social deficits and repetitive behavior. Together our findings suggest that MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal and neuroimmune populations.