AA
Alex Appert
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
392
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparative analysis of metazoan chromatin organization

Joshua Ho et al.Aug 26, 2014
+75
T
Y
J
A large collection of new modENCODE and ENCODE genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human are analysed; this reveals many conserved features of chromatin organization among the three organisms, as well as notable differences in the composition and locations of repressive chromatin. This study describes numerous new genome-wide chromatin data sets from cell lines and developmental stages of Homo sapiens, Drosophila melanogaster and Caenorhabditis elegans generated by the ENCODE and modENCODE consortia. The results point to many conserved features of chromatin organization among the three organisms, while identifying differences in the composition and locations of repressive chromatin. Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms1,2,3. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths4,5. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
0
Citation390
0
Save
1

Widespread transposon co-option in the Caenorhabditis germline regulatory network

Francesco Carelli et al.Jan 23, 2022
+3
C
A
F
Abstract The movement of selfish DNA elements can lead to widespread genomic alterations with potential to create novel functions. Here we show that transposon expansions in Caenorhabditis nematodes led to extensive rewiring of germline transcriptional regulation. We find that about one third of C. elegans germline-specific promoters have been co-opted from two related Miniature Inverted Repeat Transposable Elements (MITEs), CERP2 and CELE2. The promoters are regulated by HIM-17, a THAP domain-containing transcription factor related to a transposase. Expansion of CERP2 occurred prior to radiation of the Caenorhabditis genus, as did fixation of mutations in HIM-17 through positive selection, whereas CELE2 expanded only in C. elegans . Through comparative analyses in C. briggsae , we find evolutionary conservation of most CERP2 co-opted promoters, but a substantial fraction of events are species specific. Our work reveals the emergence of a novel transcriptional network driven by TE co-option with a major impact on regulatory evolution.
1
Citation1
0
Save
0

Chromatin accessibility is dynamically regulated across C. elegans development and ageing

Jürgen Jänes et al.Mar 10, 2018
+13
M
D
J
Abstract An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, hundreds of promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements is regulated during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.
0
Citation1
0
Save
7

The histone chaperone activity of SPT2 controls chromatin structure and function in Metazoa

Giulia Saredi et al.Feb 16, 2023
+17
F
C
G
Abstract Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans orthologue of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt- 2 mutants have increased chromatin accessibility at these loci. We also show that human SPT2 controls the incorporation of new H3.3 into chromatin. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.
5

DREAM represses distinct targets by cooperating with different THAP domain proteins

Csenge Gal et al.Aug 14, 2020
+5
F
J
C
ABSTRACT The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell cycle and other genes, but its mechanism of action is unclear. Here we demonstrate that two C. elegans THAP domain proteins, LIN-15B and LIN-36, co-localize with DREAM and function by different mechanisms for repression of distinct sets of targets. LIN-36 represses classical cell cycle targets by promoting DREAM binding and gene body enrichment of H2A.Z, and we find that DREAM subunit EFL-1/E2F is specific for LIN-36 targets. In contrast, LIN-15B represses germline specific targets in the soma by facilitating H3K9me2 promoter marking. We further find that LIN-36 and LIN-15B differently regulate DREAM binding. In humans, THAP proteins have been implicated in cell cycle regulation by poorly understood mechanisms. We propose that THAP domain proteins are key mediators of Rb/DREAM function.
0

A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress

Alicia McMurchy et al.Mar 2, 2017
+9
P
E
A
Repetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among these factors and pathways underlies the importance of safeguarding the genome through multiple means.
0

Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3 HDAC complex

Flore Beurton et al.Oct 5, 2018
+13
M
P
F
The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Ly4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss depend on chromatin context, so it is important to understand the relationship between CFP1 and other chromatin factors. Using a proteomics approach, we identified an unexpected link between C. elegans CFP-1 and a Rpd3/Sin3 histone deacetylase complex. We find that mutants of CFP-1, SIN-3, and the catalytic subunit SET-2/SET1 have similar phenotypes and misregulate common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3 HDAC complex at promoters and uncover coordinate regulation of gene expression by chromatin complexes having distinct activities.