SG
Shangqin Guo
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
1,683
h-index:
24
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia

Marc Raaijmakers et al.Mar 21, 2010
Mesenchymal cells contribute to the ‘stroma’ of most normal and malignant tissues, with specific mesenchymal cells participating in the regulatory niches of stem cells. By examining how mesenchymal osteolineage cells modulate haematopoiesis, here we show that deletion of Dicer1 specifically in mouse osteoprogenitors, but not in mature osteoblasts, disrupts the integrity of haematopoiesis. Myelodysplasia resulted and acute myelogenous leukaemia emerged that had acquired several genetic abnormalities while having intact Dicer1. Examining gene expression altered in osteoprogenitors as a result of Dicer1 deletion showed reduced expression of Sbds, the gene mutated in Schwachman–Bodian–Diamond syndrome—a human bone marrow failure and leukaemia pre-disposition condition. Deletion of Sbds in mouse osteoprogenitors induced bone marrow dysfunction with myelodysplasia. Therefore, perturbation of specific mesenchymal subsets of stromal cells can disorder differentiation, proliferation and apoptosis of heterologous cells, and disrupt tissue homeostasis. Furthermore, primary stromal dysfunction can result in secondary neoplastic disease, supporting the concept of niche-induced oncogenesis. Although a series of genetic and epigenetic events in a single cell may be necessary for oncogenesis, it has been suggested that for malignancy to develop fully a permissive microenvironment or niche is required. Support for this view comes from a new mouse model in which haematopoietic malignancies are caused by genetic changes in the microenvironment of blood cells. Deletion in bone progenitor cells of Dicer1, a gene involved in microRNA processing, leads to a myelodysplastic syndrome-like phenotype that can progress to leukaemia. The progenitor cells have reduced levels of Sbds, the gene mutated in Schwachman–Bodian–Diamond syndrome, a bone marrow failure that predisposes to leukaemia. A new mouse model is developed in which haematopoietic malignancies are caused by genetic changes in the microenvironment of blood cells. Deletion in bone progenitor cells of Dicer1, a gene involved in microRNA processing, leads to a myelodysplastic syndrome-like phenotype which can progress to leukaemia. Deregulation of Sbds, which is mutated in human Schwachman–Bodian–Diamond syndrome, may be involved in this process.
0
Citation1,036
0
Save
0

MicroRNA miR-125a controls hematopoietic stem cell number

Shangqin Guo et al.Jul 8, 2010
MicroRNAs influence hematopoietic differentiation, but little is known about their effects on the stem cell state. Here, we report that the microRNA processing enzyme Dicer is essential for stem cell persistence in vivo and a specific microRNA, miR-125a, controls the size of the stem cell population by regulating hematopoietic stem/progenitor cell (HSPC) apoptosis. Conditional deletion of Dicer revealed an absolute dependence for the multipotent HSPC population in a cell-autonomous manner, with increased HSPC apoptosis in mutant animals. An evolutionarily conserved microRNA cluster containing miR-99b, let-7e, and miR-125a was preferentially expressed in long-term hematopoietic stem cells. MicroRNA miR-125a alone was capable of increasing the number of hematopoietic stem cells in vivo by more than 8-fold. This result was accomplished through a differentiation stage-specific reduction of apoptosis in immature hematopoietic progenitors, possibly through targeting multiple proapoptotic genes. Bak1 was directly down-regulated by miR-125a and expression of a 3'UTR-less Bak1 blocked miR-125a-induced hematopoietic expansion in vivo. These data demonstrate cell-state-specific regulation by microRNA and identify a unique microRNA functioning to regulate the stem cell pool size.
0
Citation317
0
Save
1

Finetuning ERK activity enables most somatic cells to reprogram into pluripotency

Qiao Wu et al.Jun 3, 2023
Abstract Somatic cell reprogramming is a stochastic process typically resulting in only a small fraction of cells successfully converting into induced pluripotent stem cells (iPSCs). The molecular and cellular basis underlying this stochasticity remains elusive. Here we demonstrate that this stochasticity can be largely eliminated when extracellular signal-regulated kinase (ERK) activity is tuned within a narrow range by using the MEK inhibitor at one tenth the concentration in the 2i media. Without pharmacologic inhibition, cells tune ERK activity by TFII-IΔ, a multifunctional transcription factor that binds to and mediates ERK’s nuclear activation. We find TFII-IΔ to be an actin-binding protein. ERK activity is partially inhibited as TFII-IΔ binds to actin which accumulates inside the nucleus of cells undergoing morphological remodeling. Manipulating actin’s ability to accumulate inside the nucleus alters reprogramming amenability as well cell height. Actin-TFII-IΔ drive cell height to go above the minimal height required for pluripotency (10 μm). This work uncovers a mechanistic couple between cell morphology and identity, providing convenient practices to massively increase reprogramming efficiency.
1

Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin-beta receptor signaling

Xing Feng et al.Sep 28, 2022
Abstract Acute lymphoblastic and myeloblastic leukemias (ALL and AML) have been known to modify the bone marrow microenvironment and disrupt non-malignant hematopoiesis. However, the molecular mechanisms driving these alterations remain poorly defined. Here we show that leukemic cells turn-off lymphopoiesis and erythropoiesis shortly after colonizing the bone marrow. ALL and AML cells express lymphotoxin-α1β2 and activate LTβR signaling in mesenchymal stem cells (MSCs), which turns off IL7 production and prevents non-malignant lymphopoiesis. We show that the DNA damage response pathway and CXCR4 signaling promote lymphotoxin-α1β2 expression in leukemic cells. Genetic or pharmacologic disruption of LTβR signaling in MSCs restores lymphopoiesis but not erythropoiesis, reduces leukemic cell growth, and significantly extends the survival of transplant recipients. Similarly, CXCR4 blocking also prevents leukemia-induced IL7 downregulation, and inhibits leukemia growth. These studies demonstrate that acute leukemias exploit physiological mechanisms governing hematopoietic output as a strategy for gaining competitive advantage. One Sentence Summary Leukemias colonize bone marrow niches and disrupt hematopoiesis. However, the cross-talk between leukemia and niche cells remains poorly understood. We show that leukemia activates LTβR in mesenchymal stem cells which suppresses IL7 production and IL7-dependent lymphopoiesis and accelerates leukemia growth.
2

The Erythropoietin Receptor Stimulates Rapid Cycling and Formation of Larger Red Cells During Mouse and Human Erythropoiesis

Daniel Hidalgo et al.Nov 30, 2020
Abstract Erythroid terminal differentiation entails cell divisions that are coupled to progressive decreases in cell size. EpoR signaling is essential for the survival of erythroid precursors, but it is unclear whether it has other functions in these cells. Here we endowed mouse precursors that lack the EpoR with survival signaling, finding that this was sufficient to support their differentiation into enucleated red cells, but that the process was abnormal. Precursors underwent fewer and slower cell cycles and yet differentiated into smaller red cells. Surprisingly, EpoR further accelerated cycling of early erythroblasts, the fastest cycling cells in the bone marrow, while simultaneously increasing their cell size. EpoR-mediated formation of larger red cells was independent of the established pathway regulating red cell size by iron through Heme-regulated eIF2α kinase (HRI). We confirmed the effect of Epo on red cell size in human volunteers, whose mean corpuscular volume (MCV) increased following Epo administration. This increase persisted after Epo declined and was not the result of increased reticulocytes. Our work reveals a unique effect of EpoR signaling on the interaction between the cell cycle and cell growth. Further, it suggests new diagnostic interpretations for increased red cell volume, as reflecting high Epo and erythropoietic stress.
Load More