EK
Erika Kroll
Author with expertise in Mycotoxins and Their Impact
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
6
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Environmental morphing enables informed dispersal of the dandelion diaspore

Madeleine Seale et al.Feb 7, 2019
Summary Animal migration is highly sensitised to environmental cues, but plant dispersal is considered largely passive. The common dandelion, Taraxacum officinale , bears an intricate haired pappus facilitating flight. The pappus enables the formation of a separated vortex ring during flight; however, the pappus structure is not static but reversibly changes shape by closing in response to moisture. We hypothesised that this leads to changed dispersal properties in response to environmental conditions. Using wind tunnel experiments for flow visualisation, particle image velocimetry, and flight tests we characterised the fluid mechanics effects of the pappus morphing. We also modelled dispersal to understand the impact of pappus morphing on diaspore distribution. Pappus morphing dramatically alters the fluid mechanics of diaspore flight. We found that when the pappus closes in moist conditions, the drag coefficient decreases and thus the falling velocity is greatly increased. Detachment of diaspores from the parent plant also substantially decreases. The change in detachment when the pappus closes increases dispersal distances by reducing diaspore release when wind speeds are low. We propose that moisture-dependent pappus-morphing is a form of informed dispersal allowing rapid responses to changing conditions.
0
Citation5
0
Save
0

A conserved fungal Knr4/Smi1 protein is vital for maintaining cell wall integrity and host plant pathogenesis

Erika Kroll et al.Jun 3, 2024
Abstract Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module that exhibited a significant correlation with a detoxification gene-enriched wheat module. This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including morphogenesis, growth, cell wall stress tolerance, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of FgKnr4 are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici . Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.
0

The Fusarium graminearum effector protease FgTPP1 suppresses immune responses and facilitates Fusarium Head Blight Disease

Martin Darino et al.Sep 2, 2024
Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus Fusarium graminearum, which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that F. graminearum expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases. However, the contributions of these proteases to virulence remains poorly defined. Here, we characterize a F. graminearum endopeptidase, FgTPP1 (FGSG_11164), that is highly upregulated during wheat spikelet infection and is secreted from fungal cells. To elucidate the potential role of FgTPP1 in F. graminearum virulence, we generated FgTPP1 deletion mutants (ΔFgtpp1) and performed FHB infection assays. While the number of completely bleached spikes infected by F. graminearum wild-type reached 50% of total infected spikes, the number of fully bleached spikes infected by ΔFgtpp1 mutants was 25%, suggesting FgTPP1 contributes to fungal virulence. Transient expression of green fluorescent protein (GFP)-tagged FgTPP1 revealed that FgTPP1 localizes, in part, to chloroplasts and attenuates chitin-mediated activation of mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species production, and cell death induced by an autoactive disease resistance protein when expressed in planta. Notably, the FgTPP1 protein is conserved across the Ascomycota phylum, making it a core effector among ascomycete plant pathogens. These properties make FgTPP1 an ideal candidate for decoy substrate engineering, with the goal of engineering resistance to FHB, and likely other crop diseases caused by ascomycete fungi.
0

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis

Erika Kroll et al.Jan 9, 2025
Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici . Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.