MM
Michael Manhart
Author with expertise in Evolutionary Dynamics of Genetic Adaptation and Mutation
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
16
(44% Open Access)
Cited by:
8
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
44

Microbial population dynamics decouple growth response from environmental nutrient concentration

Justus Fink et al.May 4, 2022
M
N
J
How the growth rate of a microbial population responds to the environmental availability of chemical nutrients and other resources is a fundamental question in microbiology. Models of this response, such as the widely-used Monod model, are generally characterized by a maximum growth rate and a half-saturation concentration of the resource. What values should we expect for these half-saturation concentrations, and how should they depend on the environmental concentration of the resource? We survey growth response data across a wide range of organisms and resources. We find that the half-saturation concentrations vary across orders of magnitude, even for the same organism and resource. To explain this variation, we develop an evolutionary model to show that demographic fluctuations (genetic drift) can constrain the adaptation of half-saturation concentrations. We find that this effect fundamentally differs depending on the type of population dynamics: populations undergoing periodic bottlenecks of fixed size will adapt their half-saturation concentration in proportion to the environmental resource concentration, but populations undergoing periodic dilutions of fixed size will evolve half-saturation concentrations that are largely decoupled from the environmental concentration. Our model not only provides testable predictions for laboratory evolution experiments, but it also reveals how an evolved half-saturation concentration may not reflect the organism’s environment. In particular, this explains how organisms in resource-rich environments can still evolve fast growth at low resource concentrations. Altogether our results demonstrate the critical role of population dynamics in shaping fundamental ecological traits.
44
Citation4
0
Save
0

Growth tradeoffs produce complex microbial communities on a single limiting resource

Michael Manhart et al.Feb 16, 2018
E
M
The relationship between the dynamics of a community and its constituent pairwise interactions is a fundamental problem in ecology. Higher-order ecological effects beyond pairwise interactions may be key to complex ecosystems, but mechanisms to produce these effects remain poorly understood. Here we show that higher-order effects can arise from variation in multiple microbial growth traits, such as lag times and growth rates, on a single limiting resource with no other interactions. These effects produce a range of ecological phenomena: an unlimited number of strains can exhibit multi stability and neutral coexistence, potentially with a single keystone strain; strains that coexist in pairs do not coexist all together; and the champion of all pairwise competitions may not dominate in a mixed community. Since variation in multiple growth traits is ubiquitous in microbial populations due to pleiotropy and non-genetic variation, our results indicate these higher-order effects may also be widespread, especially in laboratory ecology and evolution experiments.
0
Citation4
0
Save
0

Evolution of microbial growth traits under serial dilution

Jie Lin et al.Oct 9, 2019
A
M
J
Selection of mutants in a microbial population depends on multiple cellular traits. In serial-dilution evolution experiments, three key traits are the lag time when transitioning from starvation to growth, the exponential growth rate, and the yield (number of cells per unit resource). Here we investigate how these traits evolve in laboratory evolution experiments using a minimal model of population dynamics, where the only interaction between cells is competition for a single limiting resource. We find that the fixation probability of a beneficial mutation depends on a linear combination of its growth rate and lag time relative to its immediate ancestor, even under clonal interference. The relative selective pressure on growth rate and lag time is set by the dilution factor; a larger dilution factor favors the adaptation of growth rate over the adaptation of lag time. The model shows that yield, however, is under no direct selection. We also show how the adaptation speeds of growth and lag depend on experimental parameters and the underlying supply of mutations. Finally, we investigate the evolution of covariation between these traits across populations, which reveals that the population growth rate and lag time can evolve a nonzero correlation even if mutations have uncorrelated effects on the two traits. Altogether these results provide useful guidance to future experiments on microbial evolution.
0

Separating spandrels from phenotypic targets of selection in adaptive molecular evolution

Stevan Springer et al.May 5, 2016
A
M
S
There are many examples of adaptive molecular evolution in natural populations, but there is no existing method to verify which phenotypic changes were directly targeted by selection. The problem is that correlations between traits make it difficult to distinguish between direct and indirect selection. A phenotype is a direct target of selection when that trait in particular was shaped by selection to better perform a function. An indirect target of selection, also known as an evolutionary spandrel, is a phenotype that changes only because it is correlated with another trait under direct selection. Studies that mutate genes and examine the phenotypic consequences are increasingly common, and these experiments could estimate the mutational accessibility of the phenotypic changes that arise during an instance of adaptive molecular evolution. Under indirect selection, we expect phenotypes to evolve toward states that are more accessible by mutation. Deviation from this null expectation (evolution toward a phenotypic state rarely produced by mutation) would be compelling evidence of adaptation, and could be used to distinguish direct selection from indirect selection on correlated traits. To be practical, this molecular test of adaptation requires phenotypic differences that are caused by changes in a small number of genes. These kinds of genetically simple traits have been observed in many empirical studies of adaptive evolution. Here we describe how to use mutational accessibility to separate spandrels from direct targets of selection and thus verify adaptive hypotheses for phenotypes that evolve by adaptive molecular changes at one or a few genes.
0

Understanding the evolution of interspecies interactions in microbial communities

Florien Gorter et al.Sep 16, 2019
M
M
F
Microbial communities are complex multi-species assemblages that are characterized by a multitude of interspecies interactions, which can range from mutualism to competition. The overall sign and strength of interspecies interactions have important consequences for emergent community-level properties such as productivity and stability. It is not well understood whether and how interspecies interactions change over evolutionary timescales. Here, we review the empirical evidence that evolution is an important driver of microbial community properties and dynamics on timescales that have traditionally been regarded as purely ecological. Next, we briefly discuss different modelling approaches to study evolution of communities, emphasizing the similarities and differences between evolutionary and ecological perspectives. We then propose a simple conceptual model for the evolution of communities. Specifically, we propose that the evolution of interspecies interactions depends crucially on the spatial structure of the environment. We predict that in well-mixed environments, traits will be selected exclusively for their direct fitness effects, while in spatially structured environments, traits may also be selected for their indirect fitness effects. Selection of indirectly beneficial traits should result in an increase in interaction strength over time, while selection of directly beneficial traits should not have such a systematic effect. We tested our intuitions using a simple quantitative model and found support for our hypotheses. The next step will be to test these hypotheses experimentally and provide input for a more refined version of the model in turn, thus closing the scientific cycle of models and experiments.
0

Scaling properties of evolutionary paths in a biophysical model of protein adaptation

Michael Manhart et al.Oct 6, 2014
A
M
The enormous size and complexity of genotypic sequence space frequently requires consideration of coarse-grained sequences in empirical models. We develop scaling relations to quantify the effect of this coarse-graining on properties of fitness landscapes and evolutionary paths. We first consider evolution on a simple Mount Fuji fitness landscape, focusing on how the length and predictability of evolutionary paths scale with the coarse-grained sequence length and alphabet. We obtain simple scaling relations for both the weak- and strong-selection limits, with a non-trivial crossover regime at intermediate selection strengths. We apply these results to evolution on a biophysical fitness landscape that describes how proteins evolve new binding interactions while maintaining their folding stability. We combine the scaling relations with numerical calculations for coarse-grained protein sequences to obtain quantitative properties of the model for realistic binding interfaces and a full amino acid alphabet.
0

Optimization of lag phase shapes the evolution of a bacterial enzyme

Bharat Adkar et al.Nov 16, 2016
+3
S
M
B
Mutations provide the variation that drives evolution, yet their effects on fitness remain poorly understood. Here we explore how mutations in the essential enzyme Adenylate Kinase (Adk) of E. coli affect multiple phases of population growth. We introduce a biophysical fitness landscape for these phases, showing how they depend on molecular and cellular properties of Adk. We find that Adk catalytic capacity in the cell (product of activity and abundance) is the major determinant of mutational fitness effects. We show that bacterial lag times are at a well-defined optimum with respect to Adk's catalytic capacity, while exponential growth rates are only weakly affected by variation in Adk. Direct pairwise competitions between strains show how environmental conditions modulate the outcome of a competition where growth rates and lag times have a tradeoff, altogether shedding light on the multidimensional nature of fitness and its importance in the evolutionary optimization of enzymes.
0

Protein folding and binding can emerge as evolutionary spandrels through structural coupling

Michael Manhart et al.Aug 20, 2014
A
M
Binding interactions between proteins and other molecules mediate numerous cellular processes, including metabolism, signaling, and regulation of gene expression. These interactions evolve in response to changes in the protein's chemical or physical environment (such as the addition of an antibiotic), or when genes duplicate and diverge. Several recent studies have shown the importance of folding stability in constraining protein evolution. Here we investigate how structural coupling between protein folding and binding -- the fact that most proteins can only bind their targets when folded -- gives rise to evolutionary coupling between the traits of folding stability and binding strength. Using biophysical and evolutionary modeling, we show how these protein traits can emerge as evolutionary "spandrels" even if they do not confer an intrinsic fitness advantage. In particular, proteins can evolve strong binding interactions that have no functional role but merely serve to stabilize the protein if misfolding is deleterious. Furthermore, such proteins may have divergent fates, evolving to bind or not bind their targets depending on random mutation events. These observations may explain the abundance of apparently nonfunctional interactions among proteins observed in high-throughput assays. In contrast, for proteins with both functional binding and deleterious misfolding, evolution may be highly predictable at the level of biophysical traits: adaptive paths are tightly constrained to first gain extra folding stability and then partially lose it as the new binding function is developed. These findings have important consequences for our understanding of fundamental evolutionary principles of both natural and engineered proteins.
0

Protein homeostasis imposes a barrier on functional integration of horizontally transferred genes in bacteria

Shimon Bershtein et al.Sep 1, 2015
+5
J
A
S
Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 370C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.
0

Inferring biophysical models of evolution from genome-wide patterns of codon usage

Willow Kion-Crosby et al.Mar 16, 2019
A
M
W
Frequencies of synonymous codons are typically non-uniform, despite the fact that such codons correspond to the same amino acid in the genetic code. This phenomenon, known as codon bias, is broadly believed to be due to a combination of factors including genetic drift, mutational biases, and selection for speed and accuracy of codon translation; however, quantitative modeling of codon bias has been elusive. We have developed a biophysical population genetics model which explains genome-wide codon frequencies observed across 20 organisms. We assume that codons evolve independently of each other under the influence of mutation and selection forces, and that the codon population has reached evolutionary steady state. Our model implements codon-level treatment of mutations with transition/transversion biases, and includes two contributions to codon fitness which describe codon translation speed and accuracy. Furthermore, our model includes wobble pairing — the possibility of codon-anticodon base pairing mismatches at the 3′ nucleotide position of the codon. We find that the observed patterns of genome-wide codon usage are consistent with a strong selective penalty for mistranslated amino acids. Thus codons undergo purifying selection and their relative frequencies are affected in part by mutational robustness. We find that the dependence of codon fitness on translation speed is weaker on average compared to the strength of selection against mistranslation. Although no constraints on codon-anticodon pairing are imposed a priori, a reasonable hierarchy of pairing rates, which conforms to the wobble hypothesis and is consistent with available structural evidence, emerges spontaneously as a model prediction. Finally, treating the translation process explicitly in the context of a finite ribosomal pool has allowed us to estimate mutation rates per nucleotide directly from the coding sequences. Reminiscent of Drake's observation that mutation rates are inversely correlated with the genome size, we predict that mutation rates are inversely proportional to the number of genes. Overall, our approach offers a unified biophysical and population genetics framework for studying codon bias across all domains of life.
Load More