BL
Bettina Lee
Author with expertise in Molecular Mechanisms of Inflammasome Activation and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
5,122
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor

Sarah Ewald et al.Sep 28, 2008
The role of the Toll-like receptors TLR9 and TLR7 in mediating autoimmune disease to self nucleic acid is now well appreciated, yet the mechanisms preventing rampant autoimmunity remain largely unknown. Here Ewald et al. define the route by which TLR9 and TLR7 exit the endoplasmic reticulum and travel to endolysosomes in mouse macrophages and dendritic cells. TLR9 activation is shown to require proteolytic cleavage in the endolysosome. This may be a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acids. Endolysosomal proteolytric cleavage is shown to be required for TLR9 activation by CpG Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids1,2; however, these responses come at the cost of potential autoimmunity owing to inappropriate recognition of self nucleic acids3. The localization of TLR9 and TLR7 to intracellular compartments seems to have a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acids, yet the cell biology regulating the transport and localization of these receptors remains poorly understood4,5,6. Here we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum and travel to endolysosomes in mouse macrophages and dendritic cells. The ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Notably, although both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 on activation, indicating that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acids.
0

NINJ1 mediates plasma membrane rupture during lytic cell death

Nobuhiko Kayagaki et al.Jan 20, 2021
Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.
2

Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury

Nobuhiko Kayagaki et al.May 17, 2023
Abstract Plasma membrane rupture (PMR) in dying cells undergoing pyroptosis or apoptosis requires the cell-surface protein NINJ1 1 . PMR releases pro-inflammatory cytoplasmic molecules, collectively called damage-associated molecular patterns (DAMPs), that activate immune cells. Therefore, inhibiting NINJ1 and PMR may limit the inflammation that is associated with excessive cell death. Here we describe an anti-NINJ1 monoclonal antibody that specifically targets mouse NINJ1 and blocks oligomerization of NINJ1, preventing PMR. Electron microscopy studies showed that this antibody prevents NINJ1 from forming oligomeric filaments. In mice, inhibition of NINJ1 or Ninj1 deficiency ameliorated hepatocellular PMR induced with TNF plus d -galactosamine, concanavalin A, Jo2 anti-Fas agonist antibody or ischaemia–reperfusion injury. Accordingly, serum levels of lactate dehydrogenase, the liver enzymes alanine aminotransaminase and aspartate aminotransferase, and the DAMPs interleukin 18 and HMGB1 were reduced. Moreover, in the liver ischaemia–reperfusion injury model, there was an attendant reduction in neutrophil infiltration. These data indicate that NINJ1 mediates PMR and inflammation in diseases driven by aberrant hepatocellular death.
2
Citation52
0
Save
44

Genetic targeting of Card19 is linked to disrupted Ninj1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection

Elisabet Bjånes et al.Mar 20, 2021
Abstract Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19 -deficient mice ( Card19 lxcn ) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as two independently-generated CRISPR/Cas9 Card19 knockout mice showed no defect in macrophage cell lysis, and expression of CARD19 in Card19 lxcn macrophages did not restore cell lysis. Card19 is located on chromosome 13, adjacent to Ninj1 , which was recently reported to regulate cell lysis downstream of GSDMD activation. Intriguingly, RNA-seq and western blotting revealed that Card19 lxcn BMDMs are hypomorphic for NINJ1 expression, and reconstitution of Ninj1 in Card19 lxcn immortalized BMDMs restored cell lysis. Card19 lxcn mice exhibited significantly increased susceptibility to Yersinia infection, demonstrating that cell lysis itself plays a key role in protection against bacterial infection. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent Ninj1 gene, thereby disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection. Author Summary Programmed cell death is critical for regulating tissue homeostasis and host defense against infection. Pyroptosis is an inflammatory form of programmed cell death that couples cell lysis with release of inflammatory cytokines. Cell lysis is triggered by activation of particular intracellular pore forming proteins, but how regulation of cell lysis occurs is not well understood. Genetic targeting of Card19 on chromosome 13 resulted in decreased expression of the adjacent gene, Ninj1 which was recently found to regulate terminal lysis events in response to cell death-inducing stimuli. We found that macrophages from Card19 -deficient mice were resistant to multiple forms of cell death in response to a variety of inflammatory stimuli, including canonical and non-canonical inflammasome activation, as well as triggers of cell-extrinsic apoptosis. Notably, Card19 -deficient mice were more susceptible to Yersinia infection, indicating that cell lysis contributes to control of bacterial infections. Our data provide new insight into the impact of terminal cell lysis on control of bacterial infection and highlight the role of additional factors that regulate lytic cell death downstream of gasdermin cleavage.
44
Citation2
0
Save
Load More