CF
Christine Feig
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
7,179
h-index:
24
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer

Michael Jacobetz et al.Mar 30, 2012

Objective

 Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. 

Methods

 Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. 

Results

 PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. 

Conclusions

 The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.
0
Citation944
0
Save
0

Let-7 expression defines two differentiation stages of cancer

Scott Shell et al.Jun 29, 2007
The early phases of carcinogenesis resemble embryonic development, often involving the reexpression of embryonic mesenchymal genes. The NCI60 panel of human tumor cell lines can genetically be subdivided into two superclusters (SCs) that correspond to CD95 Type I and II cells. SC1 cells are characterized by a mesenchymal and SC2 cells by an epithelial gene signature, suggesting that SC1 cells represent less differentiated, advanced stages of cancer. miRNAs are small 20- to 22-nucleotide-long noncoding RNAs that inhibit gene expression at the posttranscriptional level. By performing miRNA expression analysis on 10 Type I and 10 Type II cells, we have determined that SC1 cells express low and SC2 cells high levels of the miRNA let-7, respectively, suggesting that let-7 is a marker for less advanced cancers. Expression of the let-7 target high-mobility group A2 (HMGA2), an early embryonic gene, but not of classical epithelial or mesenchymal markers such as E-cadherin or vimentin, inversely correlated with let-7 expression in SC1 and SC2 cells. Using ovarian cancer as a model, we demonstrate that expression of let-7 and HMGA2 is a better predictor of prognosis than classical markers such as E-cadherin, vimentin, and Snail. These data identify loss of let-7 expression as a marker for less differentiated cancer.
0
Citation447
0
Save
0

CD95 promotes tumour growth

Lina Chen et al.May 25, 2010
CD95, known also as Fas and APO-1, is a classical death receptor that regulates tissue homeostasis through apoptosis. Here it is shown that cancer cells, regardless of their sensitivity to CD95-induced apoptosis, depend for optimal growth on CD95. Without CD95 the incidence of ovarian cancer and liver cancer in mice models is reduced, as is their tumour size. CD95 therefore appears to be a double-edged sword: in order to kill tumour cells it may be necessary to reduce, rather than enhance, CD95 activity. CD95 is a classical death receptor protein that regulates tissue homeostasis by inducing cell death. Here it is shown, however, that cancer cells depend on CD95 for optimal growth. Without CD95, the incidence of ovarian cancer and liver cancer in mice is reduced, as is the size of any tumours. So CD95 is a double-edged sword, and it may be necessary to reduce, rather than enhance, its activity in order to kill tumour cells. CD95 (also called Fas and APO-1) is a prototypical death receptor that regulates tissue homeostasis mainly in the immune system through the induction of apoptosis1,2,3. During cancer progression CD95 is frequently downregulated or cells are rendered apoptosis resistant4,5, raising the possibility that loss of CD95 is part of a mechanism for tumour evasion. However, complete loss of CD95 is rarely seen in human cancers4 and many cancer cells express large quantities of CD95 and are highly sensitive to CD95-mediated apoptosis in vitro. Furthermore, cancer patients frequently have elevated levels of the physiological ligand for CD95, CD95L6. These data raise the possibility that CD95 could actually promote the growth of tumours through its non-apoptotic activities7. Here we show that cancer cells in general, regardless of their CD95 apoptosis sensitivity, depend on constitutive activity of CD95, stimulated by cancer-produced CD95L, for optimal growth. Consistently, loss of CD95 in mouse models of ovarian cancer and liver cancer reduces cancer incidence as well as the size of the tumours. The tumorigenic activity of CD95 is mediated by a pathway involving JNK and Jun. These results demonstrate that CD95 has a growth-promoting role during tumorigenesis and indicate that efforts to inhibit its activity rather than to enhance it should be considered during cancer therapy.
0

Retinoic Acid–Induced Pancreatic Stellate Cell Quiescence Reduces Paracrine Wnt–β-Catenin Signaling to Slow Tumor Progression

Fieke Froeling et al.Jun 27, 2011
Background & AimsPatients with pancreatic ductal adenocarcinoma are deficient in vitamin A, resulting in activation of pancreatic stellate cells (PSCs). We investigated whether restoration of retinol to PSCs restores their quiescence and affects adjacent cancer cells.MethodsPSCs and cancer cell lines (AsPc1 and Capan1) were exposed to doses and isoforms of retinoic acid (RA) in 2-dimensional and 3-dimensional culture conditions (physiomimetic organotypic culture). The effects of all-trans retinoic acid (ATRA) were studied in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice, a model of human pancreatic ductal adenocarcinoma.ResultsAfter incubation with ATRA, PSCs were quiescent and had altered expression of genes that regulate proliferation, morphology, and motility; genes that encode cytoskeletal proteins and cytokines; and genes that control other functions, irrespective of culture conditions or dosage. In the organotypic model, and in mice, ATRA induced quiescence of PSCs and thereby reduced cancer cell proliferation and translocation of β-catenin to the nucleus, increased cancer cell apoptosis, and altered tumor morphology. ATRA reduced the motility of PSCs, so these cells created a “wall” at the junction between the tumor and the matrix that prevented cancer cell invasion. Restoring secreted frizzled-related protein 4 (sFRP4) secretion to quiescent PSCs reduced Wnt–β-catenin signaling in cancer cells and their invasive ability. Human primary and metastatic pancreatic tumor tissues stained strongly for cancer cell nuclear β-catenin but had low levels of sFRP4 (in cancer cells and PSCs).ConclusionsRA induces quiescence and reduces motility of PSCs, leading to reduced proliferation and increased apoptosis of surrounding pancreatic cancer cells. RA isoforms might be developed as therapeutic reagents for pancreatic cancer. Patients with pancreatic ductal adenocarcinoma are deficient in vitamin A, resulting in activation of pancreatic stellate cells (PSCs). We investigated whether restoration of retinol to PSCs restores their quiescence and affects adjacent cancer cells. PSCs and cancer cell lines (AsPc1 and Capan1) were exposed to doses and isoforms of retinoic acid (RA) in 2-dimensional and 3-dimensional culture conditions (physiomimetic organotypic culture). The effects of all-trans retinoic acid (ATRA) were studied in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice, a model of human pancreatic ductal adenocarcinoma. After incubation with ATRA, PSCs were quiescent and had altered expression of genes that regulate proliferation, morphology, and motility; genes that encode cytoskeletal proteins and cytokines; and genes that control other functions, irrespective of culture conditions or dosage. In the organotypic model, and in mice, ATRA induced quiescence of PSCs and thereby reduced cancer cell proliferation and translocation of β-catenin to the nucleus, increased cancer cell apoptosis, and altered tumor morphology. ATRA reduced the motility of PSCs, so these cells created a “wall” at the junction between the tumor and the matrix that prevented cancer cell invasion. Restoring secreted frizzled-related protein 4 (sFRP4) secretion to quiescent PSCs reduced Wnt–β-catenin signaling in cancer cells and their invasive ability. Human primary and metastatic pancreatic tumor tissues stained strongly for cancer cell nuclear β-catenin but had low levels of sFRP4 (in cancer cells and PSCs). RA induces quiescence and reduces motility of PSCs, leading to reduced proliferation and increased apoptosis of surrounding pancreatic cancer cells. RA isoforms might be developed as therapeutic reagents for pancreatic cancer.
0
Citation342
0
Save
0

Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia

Ed Roberts et al.May 27, 2013
Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP+ cells, we find that they reside in most tissues of the adult mouse. FAP+ cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP+ cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP+ stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia.
0
Citation328
0
Save
0

Strand-resolved mutagenicity of DNA damage and repair

C. Anderson et al.Jun 12, 2024
Abstract DNA base damage is a major source of oncogenic mutations 1 . Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation 2 . Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication 3,4 , we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts 5 . The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
0
Citation2
0
Save
0

Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains

Elissavet Kentepozidou et al.Jun 12, 2019
CTCF binding contributes to the establishment of higher order genome structure by demarcating the boundaries of large-scale topologically associating domains (TADs). We have carried out an experimental and computational study that exploits the natural genetic variation across five closely related species to assess how CTCF binding patterns stably fixed by evolution in each species contribute to the establishment and evolutionary dynamics of TAD boundaries. We performed CTCF ChIP-seq in multiple mouse species to create genome-wide binding profiles and associated them with TAD boundaries. Our analyses reveal that CTCF binding is maintained at TAD boundaries by an equilibrium of selective constraints and dynamic evolutionary processes. Regardless of their conservation across species, CTCF binding sites at TAD boundaries are subject to stronger sequence and functional constraints compared to other CTCF sites. TAD boundaries frequently harbor rapidly evolving clusters containing both evolutionary old and young CTCF sites as a result of repeated acquisition of new species-specific sites close to conserved ones. The overwhelming majority of clustered CTCF sites colocalize with cohesin and are significantly closer to gene transcription start sites than nonclustered CTCF sites, suggesting that CTCF clusters particularly contribute to cohesin stabilization and transcriptional regulation. Overall, CTCF site clusters are an apparently important feature of CTCF binding evolution that are critical the functional stability of higher order chromatin structure.
Load More