CD95, known also as Fas and APO-1, is a classical death receptor that regulates tissue homeostasis through apoptosis. Here it is shown that cancer cells, regardless of their sensitivity to CD95-induced apoptosis, depend for optimal growth on CD95. Without CD95 the incidence of ovarian cancer and liver cancer in mice models is reduced, as is their tumour size. CD95 therefore appears to be a double-edged sword: in order to kill tumour cells it may be necessary to reduce, rather than enhance, CD95 activity. CD95 is a classical death receptor protein that regulates tissue homeostasis by inducing cell death. Here it is shown, however, that cancer cells depend on CD95 for optimal growth. Without CD95, the incidence of ovarian cancer and liver cancer in mice is reduced, as is the size of any tumours. So CD95 is a double-edged sword, and it may be necessary to reduce, rather than enhance, its activity in order to kill tumour cells. CD95 (also called Fas and APO-1) is a prototypical death receptor that regulates tissue homeostasis mainly in the immune system through the induction of apoptosis1,2,3. During cancer progression CD95 is frequently downregulated or cells are rendered apoptosis resistant4,5, raising the possibility that loss of CD95 is part of a mechanism for tumour evasion. However, complete loss of CD95 is rarely seen in human cancers4 and many cancer cells express large quantities of CD95 and are highly sensitive to CD95-mediated apoptosis in vitro. Furthermore, cancer patients frequently have elevated levels of the physiological ligand for CD95, CD95L6. These data raise the possibility that CD95 could actually promote the growth of tumours through its non-apoptotic activities7. Here we show that cancer cells in general, regardless of their CD95 apoptosis sensitivity, depend on constitutive activity of CD95, stimulated by cancer-produced CD95L, for optimal growth. Consistently, loss of CD95 in mouse models of ovarian cancer and liver cancer reduces cancer incidence as well as the size of the tumours. The tumorigenic activity of CD95 is mediated by a pathway involving JNK and Jun. These results demonstrate that CD95 has a growth-promoting role during tumorigenesis and indicate that efforts to inhibit its activity rather than to enhance it should be considered during cancer therapy.