A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
FC
Francesca Ceroni
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
773
h-index:
13
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Burden-driven feedback control of gene expression

Francesca Ceroni et al.Mar 26, 2018
In this CRISPR-based feedback control system, sgRNA expression is triggered by the burden of protein overexpression, and the sgRNA directs repression of the exogenous gene promoter to reduce burdensome expression and restore growth of the cell. Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable.
0
Citation329
0
Save
0

Degradation bottlenecks and resource competition in transiently and stably engineered mammalian cells

Jacopo Gabrielli et al.Jan 2, 2025
Abstract Degradation tags, otherwise known as degrons, are portable sequences that can be used to alter protein stability. Here, we report that degron-tagged proteins compete for cellular degradation resources in engineered mammalian cells leading to coupling of the degradation rates of otherwise independently expressed proteins when constitutively targeted human degrons are adopted. We show the effect of this competition to be dependent on the context of the degrons. By considering different proteins, degron position and cellular hosts, we highlight how the impact of the degron on both degradation strength and resource coupling changes, with identification of orthogonal combinations. By adopting inducible bacterial and plant degrons we also highlight how controlled uncoupling of synthetic construct degradation from the native machinery can be achieved. We then build a genomically integrated capacity monitor tagged with different degrons and confirm resource competition between genomic and transiently expressed DNA constructs. This work expands the characterisation of resource competition in engineered mammalian cells to protein degradation also including integrated systems, providing a framework for the optimisation of heterologous expression systems to advance applications in fundamental and applied biological research.
0

Growth defects and loss-of-function in synthetic gene circuits

Evangelos-Marios Nikolados et al.Apr 30, 2019
Synthetic gene circuits perturb the physiology of their cellular host. The extra load on endogenous processes shifts the equilibrium of resource allocation in the host, leading to slow growth and reduced biosynthesis. Here we built integrated host-circuit models to quantify growth defects caused by synthetic gene circuits. Simulations reveal a complex relation between circuit output and cellular capacity for gene expression. For weak induction of heterologous genes, protein output can be increased at the expense of growth defects. Yet for stronger induction, cellular capacity reaches a tipping point, beyond which both gene expression and growth rate drop sharply. Extensive simulations across various growth conditions and large regions of the design space suggest that the critical capacity is a result of ribosomal scarcity. We studied the impact of growth defects on various gene circuits and transcriptional logic gates, which highlights the extent to which cellular burden can limit, shape and even break down circuit function. Our approach offers a comprehensive framework to assess the impact of host-circuit interactions in silico , with wide-ranging implications for the design and optimization of bacterial gene circuits.
Load More