GF
Ghazaleh Fatemifar
Author with expertise in Genomic Studies and Association Analyses
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
0
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9

Amand Schmidt et al.May 25, 2018
Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Fourteen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95%CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95%CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95%CI 0.57; 1.22) for the GS, compared to 0.85 (95%CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95%CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. Apparent discordance between genetic associations and trial outcome for T2DM might be explained lack by a of statistical precision, or differences in the nature and duration of genetic versus pharmacological perturbation of PCSK9.
0

Genome-wide association study provides new insights into the genetic architecture and pathogenesis of heart failure

Sonia Shah et al.Jul 10, 2019
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report the largest GWAS meta-analysis of HF to-date, comprising 47,309 cases and 930,014 controls. We identify 12 independent associations with HF at 11 genomic loci, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function suggesting shared genetic aetiology. Expression quantitative trait analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homeostasis (BAG3), and cellular senescence (CDKN1A). Using Mendelian randomisation analysis we provide new evidence supporting previously equivocal causal roles for several HF risk factors identified in observational studies, and demonstrate CAD-independent effects for atrial fibrillation, body mass index, hypertension and triglycerides. These findings extend our knowledge of the genes and pathways underlying HF and may inform the development of new therapeutic approaches.
0

UK phenomics platform for developing and validating EHR phenotypes: CALIBER

Spiros Denaxas et al.Feb 4, 2019
Objective Electronic Health Records (EHR) are a rich source of information on human diseases, but the information is variably structured, fragmented, curated using different coding systems and collected for purposes other than medical research. We describe an approach for developing, validating and sharing reproducible phenotypes from national structured EHR in the United Kingdom (UK) with applications for translational research.Materials and Methods We implemented a rule-based phenotyping framework, with up to six approaches of validation. We applied our framework to a sample of 15 million individuals in a national EHR data source (population-based primary care, all ages) linked to hospitalization and death records in England. Data comprised continuous measurements e.g. blood pressure, medication information and coded diagnoses, symptoms, procedures and referrals, recorded using five controlled clinical terminologies: a) Read (primary care, subset of SNOMED-CT), b) International Classification of Diseases 9th/10th Revision (ICD-9, ICD-10, secondary care diagnoses and cause of mortality), c) OPCS Classification of Interventions and Procedures (OPCS-4, hospital surgical procedures), and d) DM+D prescription codes.Results Using the CALIBER phenotyping framework, we created algorithms for 51 diseases, syndromes, biomarkers and lifestyle risk factors and provide up to six validation approaches. The EHR phenotypes are curated in the open-access CALIBER Portal ( ) and have been used by 40 national/international research groups in 60 peer-reviewed publications.Conclusion We describe a UK EHR phenomics approach within the CALIBER EHR data platform with initial evidence of validity and use, as an important step towards international use of UK EHR data for health research.