AL
Alexander Lazar
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
The University of Texas MD Anderson Cancer Center, Universidade Federal de São Paulo, The University of Texas Health Science Center at Houston
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(73% Open Access)
Cited by:
1,834
h-index:
61
/
i10-index:
133
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

Mark Rubin et al.Nov 20, 2020
+753
N
M
M

Summary

 DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.
2
Citation852
0
Save
6

Genomic and Functional Approaches to Understanding Cancer Aneuploidy

Alison Taylor et al.Nov 20, 2020
+736
G
J
A
Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.
6
Citation844
0
Save
5

Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity

Yared Hailemichael et al.May 25, 2022
+34
N
D
Y
Immune checkpoint blockade (ICB) therapy frequently induces immune-related adverse events. To elucidate the underlying immunobiology, we performed a deep immune analysis of intestinal, colitis, and tumor tissue from ICB-treated patients with parallel studies in preclinical models. Expression of interleukin-6 (IL-6), neutrophil, and chemotactic markers was higher in colitis than in normal intestinal tissue; T helper 17 (Th17) cells were more prevalent in immune-related enterocolitis (irEC) than T helper 1 (Th1). Anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) induced stronger Th17 memory in colitis than anti-program death 1 (anti-PD-1). In murine models, IL-6 blockade associated with improved tumor control and a higher density of CD4+/CD8+ effector T cells, with reduced Th17, macrophages, and myeloid cells. In an experimental autoimmune encephalomyelitis (EAE) model with tumors, combined IL-6 blockade and ICB enhanced tumor rejection while simultaneously mitigating EAE symptoms versus ICB alone. IL-6 blockade with ICB could de-couple autoimmunity from antitumor immunity.
5
Citation134
1
Save
34

Enhancer Reprogramming in Melanoma Immune Checkpoint Therapy Resistance

Mayinuer Maitituoheti et al.Oct 24, 2023
+32
M
A
M
ABSTRACT Immune checkpoint blockade (ICB) therapy has improved long-term survival for patients with advanced melanoma. However, there is critical need to identify potential biomarkers of response and actionable strategies to improve response rates. Through generation and analysis of 148 chromatin modification maps for 36 melanoma samples from patients treated with anti-PD- 1, we identified significant enrichment of active enhancer states in non-responders at baseline. Analysis of an independent cohort of 20 samples identified a set of 437 enhancers that predicted response to anti-PD-1 therapy (Area Under the Curve of 0.8417). The activated non-responder enhancers marked a group of key regulators of several pathways in melanoma cells (including c- MET, TGFβ, EMT and AKT) that are known to mediate resistance to ICB therapy and several checkpoint receptors in T cells. Epigenetic editing experiments implicated involvement of c-MET enhancers in the modulation of immune response. Finally, inhibition of enhancers and repression of these pathways using bromodomain inhibitors along with anti-PD-1 therapy significantly decreased melanoma tumor burden and increased T-cell infiltration. Together, these findings identify a potential enhancer-based biomarker of resistance to anti-PD-1 and suggest enhancer blockade in combination with ICB as a potential strategy to improve responses.
9

Dissociation Protocols used for Sarcoma Tissues Bias the Transcriptome observed in Single-cell and Single-nucleus RNA sequencing

Danh Truong et al.Oct 24, 2023
+10
R
S
D
Abstract Background Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their individual cellular constituents has also created new opportunities to generate single-cell atlases for many organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas – tumors of mesenchymal origin – are subject to the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three aggressive subtypes: osteosarcoma, Ewing sarcoma (ES), desmoplastic small round cell tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from more widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tissue phenotype or pathognomonic fusion proteins. Results We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei from ES, DSRCT, and osteosarcoma PDXs. We detected warm dissociation artifacts in single-cell samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were observed regardless of dissociation method. In addition, we showed that dissociation method biases can be computationally corrected. Conclusions We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in sarcoma PDXs.
9
Paper
Citation2
0
Save
0

Cell-of-Origin Analysis of Metastatic Gastric Cancer Uncovers the Origin of Inherent Intratumor Heterogeneity and a Fundamental Prognostic Signature

Ruiping Wang et al.May 7, 2020
+20
K
S
R
Intra-tumoral heterogeneity (ITH) is the fundamental property of cancer, however, the origin of ITH remains poorly understood. Here we performed single-cell RNA sequencing of peritoneal carcinomatosis (PC) from 20 patients with advanced gastric adenocarcinoma (GAC), constructed a transcriptome map of 45,048 PC cells, determined the cell-of-origin of each tumor cell, and incisively explored ITH of PC tumor cells at single-cell resolution. The links between cell-of-origin and ITH was illustrated at transcriptomic, genotypic, molecular, and phenotypic levels. This study characterized the origins of PC tumor cells that populate and thrive in the peritoneal cavity, uncovered the diversity in tumor cell-of-origins and defined it as a key determinant of ITH. Furthermore, cell-of-origin-based analysis classified PC into two cellular subtypes that were prognostic independent of clinical variables, and a 12-gene prognostic signature was then derived and validated in multiple large-scale GAC cohorts. The prognostic signature appears fundamental to GAC carcinogenesis/progression and could be practical for patient stratification.
0

Enhancer Reprogramming Confers Dependence on Glycolysis and IGF signaling in KMT2D Mutant Melanoma

Mayinuer Maitituoheti et al.May 7, 2020
+28
M
E
M
Epigenetic modifiers have emerged as important regulators of tumor progression. We identified histone methyltransferase KMT2D as a potent tumor-suppressor through an in vivo epigenome-focused pooled RNAi screen in melanoma. KMT2D harbors frequent somatic point mutations in multiple tumor types. How these events contribute to tumorigenesis and whether they impart therapeutic vulnerability are poorly understood. To address these questions, we generated a genetically engineered mouse model of melanoma based on conditional and melanocyte-specific deletion of KMT2D. We demonstrate KMT2D as a bona fide tumor suppressor which cooperates with activated BRAF. KMT2D-deficient tumors showed substantial reprogramming of key metabolic pathways including glycolysis. Glycolysis enzymes, intermediate metabolites and glucose consumption rate were aberrantly upregulated in KMT2D mutant cells. The pharmacological inhibition of glycolysis reduced proliferation and tumorigenesis preferentially in KMT2D mutant cells. Mechanistically, KMT2D loss caused drastic reduction of H3K4me1-marked active enhancer states. Loss of distal enhancer and subsequent reduction in expression of IGFBP5 activated IGF1R-AKT pathway to increase glycolysis in KMT2D-deficient cells. We conclude that KMT2D loss promotes tumorigenesis by facilitating increased usage of glycolysis pathway for enhanced biomass needs via enhancer reprogramming. Our data imply that inhibition of glycolysis or IGFR pathway could be a potential therapeutic strategy in KMT2D mutant tumors.
1

ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97

Amir Pozner et al.Oct 24, 2023
+35
L
S
A
Abstract The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP’s potential as a novel therapeutic target.
1
0
Save
4

METI: Deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics

Jing Jiang et al.Oct 24, 2023
+25
J
Y
J
The recent advance of spatial transcriptomics (ST) technique provides valuable insights into the organization and interactions of cells within the tumor microenvironment (TME). While various analytical tools have been developed for tasks such as spatial clustering, spatially variable gene identification, and cell type deconvolution, most of them are general methods lacking consideration of histological features in spatial data analysis. This limitation results in reduced performance and interpretability of their results when studying the TME. Here, we present a computational framework named, Morphology-Enhanced Spatial Transcriptome Analysis Integrator (METI) to address this gap. METI is an end-to-end framework capable of spatial mapping of both cancer cells and various TME cell components, robust stratification of cell type and transcriptional states, and cell co-localization analysis. By integrating both spatial transcriptomics, cell morphology and curated gene signatures, METI enhances our understanding of the molecular landscape and cellular interactions within the tissue, facilitating detailed investigations of the TME and its functional implications. The performance of METI has been evaluated on ST data generated from various tumor tissues, including gastric, lung, and bladder cancers, as well as premalignant tissues. Across all these tissues and conditions, METI has demonstrated robust performance with consistency.
0

Bivalent and Broad Chromatin Domains Regulate Pro-metastatic Drivers in Melanoma

Christopher Terranova et al.May 7, 2020
+17
M
M
C
Chromatin deregulation is an emerging hallmark of cancer. However, the extent of epigenetic aberrations during tumorigenesis and their relationship with genetic aberrations are poorly understood. Using ChIP-sequencing for enhancers (H3K27ac and H3K4me1), promoters (H3K4me3), active transcription (H3K79me2) and polycomb (H3K27me3) or heterochromatin (H3K9me3) repression we generated chromatin state profiles in metastatic melanoma using 46 tumor samples and cell lines. We identified a strong association of NRAS, but not BRAF mutations, with bivalent states harboring H3K4me3 and H3K27me3 marks. Importantly, the loss and gain of bivalent states occurred on important pro metastasis regulators including master transcription factor drivers of mesenchymal phenotype including ZEB1, TWIST1, SNAI1 and CDH1. Unexpectedly, a subset of these and additional pro-metastatic drivers (e.g. POU3F2, SOX9 and PDGFRA) as well as melanocyte-specific master regulators (e.g. MITF, ZEB2, and TFAP2A) were regulated by exceptionally wide H3K4me3 domains that can span tens of thousands of kilobases suggesting roles of this new epigenetic element in melanoma metastasis. Overall, we find that BRAF, NRAS and WT melanomas may use bivalent states and broad H3K4me3 domains in a specific manner to regulate pro-metastatic drivers. We propose that specific epigenetic traits, such as bivalent and broad domains, get assimilated in the epigenome of pro-metastatic clones to drive evolution of cancer cells to metastasis.
Load More