ML
Mark Lucanic
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
12
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain specific lifespan and health effects in Caenorhabditis nematodes

Stephen Banse et al.Nov 10, 2021
+26
E
C
S
Abstract The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies—for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.
20
Citation1
0
Save
0

Automated Lifespan Determination Across Caenorhabditis Strains and Species Reveals Assay-Specific Effects of Chemical Interventions

Stephen Banse et al.Sep 14, 2019
+28
C
M
S
The goal of the Caenorhabditis Intervention Testing Program is to identify robust and reproducible pro-longevity interventions that are efficacious across genetically diverse cohorts in the Caenorhabditis genus. The project design features multiple experimental replicates collected by three different laboratories. Our initial effort employed fully manual survival assays. With an interest in increasing throughput, we explored automation with flatbed scanner-based Automated Lifespan Machines (ALMs). We used ALMs to measure survivorship of 22 Caenorhabditis strains spanning three species. Additionally, we tested five chemicals that we previously found extended lifespan in manual assays. Overall, we found similar sources of variation among trials for the ALM and our previous manual assays, verifying reproducibility of outcome. Survival assessment was generally consistent between the manual and the ALM assays, although we did observe radically contrasting results for certain compound interventions. We found that particular lifespan outcome differences could be attributed to protocol elements such as enhanced light exposure of specific compounds in the ALM, underscoring that differences in technical details can influence outcomes and therefore interpretation. Overall, we demonstrate that the ALMs effectively reproduce a large, conventionally scored dataset from a diverse test set, independently validating ALMs as a robust and reproducible approach towards aging-intervention screening.
0

Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice

Azar Shahmirzadi et al.Oct 4, 2019
+13
C
D
A
The decline in early life mortality since the 1950s has resulted in dramatic demographic shift towards aged population. Aging manifests as a decline in health, multiple organ dysfunction and increased vulnerability to diseases, which degrades quality of life. A verity of genetic and pharmacological interventions, mostly from non-vertebrate models, have been identified that can enhance lifespan. Whether these interventions extend healthspan, the disease free and functional period of life, has only sometimes been tested and is often a matter of debate. Human aging indices have been developed to assess elements of functional decline with aging (e.g. sarcopenia, cognitive function). However, corresponding comprehensive indices in mice are seldom applied to aging studies. To probe the relationship between healthspan and lifespan extension in mammals, we performed a series of longitudinal, clinically-relevant healthspan measurements. Metabolism and aging are tightly connected and specific perturbations of nutrient-sensing pathways can enhance longevity in laboratory animals. Here we show that alpha-ketoglutarate (delivered in the form of a Calcium salt, CaAKG), a key metabolite in tricarboxylic (TCA) cycle that is reported to extend lifespan in worms , can significantly extend lifespan and healthspan in mice. AKG is involved in various fundamental processes including collagen synthesis and epigenetic changes. Due to its broad roles in multiple biological processes, AKG has been a subject of interest for researchers in various fields. AKG also influences several age-related processes, including stem cell proliferation and osteoporosis. To determine its role in mammalian aging, we administered CaAKG in 18 months old mice and determined its effect on the onset of frailty and survival, discovering that the metabolite promotes longer, healthier life associated with a decrease in levels of inflammatory factors. Interestingly the reduction in frailty was more dramatic than the increase in lifespan, leading us to propose that CaAKG compresses morbidity.
1

Potassium-chelating drug sodium polystyrene sulfonate enhances lysosomal function and suppresses proteotoxicity

Cyrene Arputhasamy et al.Oct 22, 2021
+9
A
M
C
ABSTRACT Lysosomes are crucial for degradation and recycling of damaged proteins and cellular components. Therapeutic strategies enhancing lysosomal function are a promising approach for aging and age-related neurodegenerative diseases. Here, we show that an FDA approved drug sodium polystyrene sulfonate (SPS), used to reduce high blood potassium in humans, enhances lysosomal function both in C . elegans and in human neuronal cells. Enhanced lysosomal function following SPS treatment is accompanied by the suppression of proteotoxicity caused by expression of the neurotoxic peptides Aβ and TAU. Additionaly, treatment with SPS imparts health benefits as it significantly increases lifespan in C . elegans . Overall our work supports the potential use of SPS as a prospective geroprotective intervention. HIGHLIGHTS Sodium polystyrene sulfonate improves pH-dependent processing of lysosomal cargo, enhances proteotoxic stress resistance and extends lifespan in C. elegans Sodium polystyrene sulfonate boosts lysosomal function in human neuronal cells and reduces level of aggregation-associated phosphorylated-TAU