XT
Xiaoyu Tian
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(50% Open Access)
Cited by:
1,897
h-index:
55
/
i10-index:
175
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Design and Synthesis of Curcumin Analogues for in Vivo Fluorescence Imaging and Inhibiting Copper-Induced Cross-Linking of Amyloid Beta Species in Alzheimer’s Disease

Xueli Zhang et al.Oct 11, 2013
In this article, we first designed and synthesized curcumin-based near-infrared (NIR) fluorescence imaging probes for detecting both soluble and insoluble amyloid beta (Aβ) species and then an inhibitor that could attenuate cross-linking of Aβ induced by copper. According to our previous results and the possible structural stereohindrance compatibility of the Aβ peptide and the hydrophobic/hydrophilic property of the Aβ13-20 (HHQKLVFF) fragment, NIR imaging probe CRANAD-58 was designed and synthesized. As expected CRANAD-58 showed significant fluorescence property changes upon mixing with both soluble and insoluble Aβ species in vitro. In vivo NIR imaging revealed that CRANAD-58 was capable of differentiating transgenic and wild-type mice as young as 4 months old, the age that lacks apparently visible Aβ plaques and Aβ is likely in its soluble forms. According to our limited studies on the interaction mechanism between CRANAD-58 and Aβ, we also designed CRANAD-17 to attenuate the cross-linking of Aβ42 induced by copper. It is well-known that the coordination of copper with imidazoles on Histidine-13 and 14 (H13, H14) of Aβ peptides could initialize covalent cross-linking of Aβ. In CRANAD-17, a curcumin scaffold was used as an anchoring moiety to usher the designed compound to the vicinity of H13 and H14 of Aβ, and imidazole rings were incorporated to compete with H13/H14 for copper binding. The results of SDS-PAGE gel and Western blot indicated that CRANAD-17 was capable of inhibiting Aβ42 cross-linking induced by copper. This raises a potential for CRANAD-17 to be considered for AD therapy.
0

Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease

Xueli Zhang et al.Jul 21, 2015
Near-infrared fluorescence (NIRF) molecular imaging has been widely applied to monitoring therapy of cancer and other diseases in preclinical studies; however, this technology has not been applied successfully to monitoring therapy for Alzheimer's disease (AD). Although several NIRF probes for detecting amyloid beta (Aβ) species of AD have been reported, none of these probes has been used to monitor changes of Aβs during therapy. In this article, we demonstrated that CRANAD-3, a curcumin analog, is capable of detecting both soluble and insoluble Aβ species. In vivo imaging showed that the NIRF signal of CRANAD-3 from 4-mo-old transgenic AD (APP/PS1) mice was 2.29-fold higher than that from age-matched wild-type mice, indicating that CRANAD-3 is capable of detecting early molecular pathology. To verify the feasibility of CRANAD-3 for monitoring therapy, we first used the fast Aβ-lowering drug LY2811376, a well-characterized beta-amyloid cleaving enzyme-1 inhibitor, to treat APP/PS1 mice. Imaging data suggested that CRANAD-3 could monitor the decrease in Aβs after drug treatment. To validate the imaging capacity of CRANAD-3 further, we used it to monitor the therapeutic effect of CRANAD-17, a curcumin analog for inhibition of Aβ cross-linking. The imaging data indicated that the fluorescence signal in the CRANAD-17-treated group was significantly lower than that in the control group, and the result correlated with ELISA analysis of brain extraction and Aβ plaque counting. It was the first time, to our knowledge, that NIRF was used to monitor AD therapy, and we believe that our imaging technology has the potential to have a high impact on AD drug development.
0

Zonation-dependent single-endothelial cell transcriptomic changes in the aged brain

Lei Zhao et al.Oct 10, 2019
With advances in single-cell genomics, molecular signatures of cells comprising the brain vasculature are revealed in unprecedented detail[1][1],[2][2], yet the ageing-associated cell subtype transcriptomic changes which may contribute to neurovascular dysfunction in neurodegenerative diseases[3][3]–[7][4] remain elusive. Here, we performed single-cell transcriptomic profiling of brain endothelial cells (EC) in young adult and aged mice to characterize their ageing-associated genome-wide expression changes. We identified zonation-dependent transcriptomic changes in aged brain EC subtypes, with capillary ECs exhibiting the most transcriptomic alterations. Pathway enrichment analysis revealed altered immune/cytokine signaling in ECs of all vascular segments, while functional changes impacting the blood-brain barrier (BBB) and glucose/energy metabolism were most prominently implicated in ECs of the capillary bed – the primary site where ECs and other neurovascular unit (NVU) cell types closely interact and coordinate to regulate BBB and cerebral blood flow in health and diseased conditions[8][5]–[17][6]. Furthermore, an overrepresentation of Alzheimer’s disease (AD)-associated genes identified from GWAS studies was evident among the human orthologs of differentially expressed genes of aged capillary ECs but not other EC subtypes. Importantly, for numerous EC-enriched differentially expressed genes with important functional roles at the BBB and/or association with AD, we found concordant expression changes in human aged or AD brains. Finally, we demonstrated that treatment with exenatide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, strongly reverses transcriptomic changes in ECs and largely reduces BBB leakage in the aged brain. Thus, our study provides insights into detailed transcriptomic alterations underlying brain EC ageing that are complex with subtype specificity yet amenable to pharmacological interventions. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-7 [5]: #ref-8 [6]: #ref-17
Load More