DM
Daniël Melters
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
445
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

Daniël Melters et al.Jan 1, 2013
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
0
Citation445
0
Save
0

The ratio between centromeric proteins CENP-A and CENP-C maintains homeostasis of human centromeres

Daniël Melters et al.Apr 10, 2019
The centromere is the chromosomal locus that seeds the kinetochore, allowing for a physical connection between the chromosome and the mitotic spindle. At the heart of the centromere is the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle the constitutive centromere associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome dynamics in vivo is unknown. Here, we purify kinetochore associated native centromeric chromatin and analyze its biochemical features using a combinatorial approach. We report that kinetochore bound chromatin has strongly reduced DNA accessibility and a distinct stabilized nucleosomal configuration. Disrupting the balance between CENP-A and CENP-C result in reduced centromeric occupancy of RNA polymerase 2 and impaired de novo CENP-A loading on the centromeric chromatin fiber, correlating with significant mitotic defects. CENP-A mutants that restore the ratio rescue the mitotic defects. These data support a model in which CENP-C bound centromeric nucleosomes behave as a barrier to the transcriptional machinery and suggest that maintaining the correct ratio between CENP-A and CENP-C levels is critical for centromere homeostasis.
0

Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners

Daniël Melters et al.Aug 15, 2018
Histone variants fine-tune transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether and how nucleosome variants encode unique mechanical properties to their cognate chromatin structures remains elusive. Here, using novel in silico and in vitro nanoindentation methods, extending to in vivo dissections, we report that histone variant nucleosomes are intrinsically more elastic than their canonical counterparts. Furthermore, binding proteins which discriminate between histone variant nucleosomes suppress this innate elasticity and also compact chromatin. Interestingly, when we overexpress the binding proteins in vivo , we also observe increased compaction of chromatin enriched for histone variant nucleosomes, correlating with diminished access. Together, these data suggest a plausible link between innate mechanical properties possessed by histone variant nucleosomes, the adaptability of chromatin states in vivo , and the epigenetic plasticity of the underlying locus.Significance Nucleosomes are the base unit which organize eukaryotic genomes. Besides the canonical histone, histone variants create unique local chromatin domains that fine-tune transcription, replication, DNA damage repair, and faithful chromosome segregation. We developed computational and single-molecule nanoindentation tools to determine mechanical properties of histone variant nucleosomes. We found that the CENP-A nucleosome variant is more elastic than the canonical H3 nucleosome but becomes stiffer when bound to its partner CENP-C. In addition, CENP-C induces cross-array clustering, creating a chromatin state that less accessible. These data suggest that innate material properties of nucleosomes can influence the ultimate chromatin state, thereby influence biological outcomes.
1

Single Molecule Analysis of CENP-A Chromatin by High-Speed Atomic Force Microscopy

Daniël Melters et al.Jan 4, 2022
Abstract Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated in the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about chromatin accessibility in vivo . By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the MSD and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo . Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. Thus, changes which alter chromatin accessibility in vitro , also correspondingly alter transcription in vivo . These data suggest a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance mobility.
0

Native and tagged CENP-A histones are functionally inequivalent

Minh Bui et al.Jun 2, 2024
Abstract Background Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function. Results We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes. Conclusions These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.