MA
Mark Allenby
Author with expertise in 3D Bioprinting Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
4
h-index:
17
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Bio-hybrid Soft Robotic Bioreactors for Mimicking Multi-Axial Femoropopliteal Artery Mechanobiology

Cody Fell et al.Sep 24, 2021
Abstract The emerging field of soft robotics aims to emulate dynamic physiological locomotion. Soft robotics’ mimicry of naturally complex biomechanics makes them ideal platforms for exerting mechanical stimuli for patient-specific tissue maturation and disease modeling applications. Such platforms are essential for emulating highly flexible tissues such as the kneecap’s femoropopliteal artery (FPA), one of the most flexible arteries in the body, which flexes and bends during walking, standing, and crouching movements. The FPA is a frequent site of disease, where 80% of all peripheral artery diseases manifest, affecting over 200 million people worldwide. The complex biomechanical and hemodynamic forces within the FPA have been implicated in the frequent occurrence of PAD and lead to debilitating morbidities, such as limb-threatening ischemia. To better mimic these complex biomechanics, we developed an in-vitro bio-hybrid soft robot (BSR). First, Platsil OO-20 was identified as an ideal hyperelastomer for both cell culture and BSR fabrication using 3D printed molds. Then, employing a simulation-based design workflow, we integrated pneumatic network (PneuNet) actuators cast with Platsil OO-20, which extend in angular, longitudinal, and radial dimensions. Pressurizing the BSR PneuNets enabled a range of mechanical stimuli to be dynamically applied during tissue culture to mimic normal and diseased FPA flexions during daily walking and sitting poses, the most extreme being radial distensions of 20% and angular flexions of 140°. Finally, these designed, manufactured, and programmed vascular BSRs were seeded with mesenchymal stem cells and conditioned for 24 hours to highlight the effect of dynamic conditioning on cultured cell alignment, as well as type IV collagen production and the upregulation of smooth muscle phenotypes. Soft robotic bioreactor platforms that accurately mimic patient-, disease-, and lifestyle-specific mechanobiology will develop fundamental disease understanding, preoperative laboratory simulations for existing therapeutics, and biomanufacturing platforms for tissue-engineered implants.
20

Model-based data analysis of tissue growth in thin 3D printed scaffolds

Alexander Browning et al.Mar 25, 2021
Abstract Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell behaviour in biologically realistic geometries. Cell proliferation and migration in these experiments have yet to be explicitly characterised, limiting the ability of experimentalists to determine the effects of various experimental conditions, such as scaffold geometry, on cell behaviour. We consider tissue growth by osteoblastic cells in melt electro-written scaffolds that comprise thin square pores with sizes that we deliberately vary. We collect highly detailed temporal measurements of the average cell density, tissue coverage, and tissue geometry. To quantify tissue growth in terms of the underlying cell proliferation and migration processes, we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher reaction-diffusion equation. Parameter estimates and uncertainty quantification through profile likelihood analysis reveal consistency in the rate of cell proliferation and steady-state cell density between pore sizes. This analysis also serves as an important model verification tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness of these models to describe tissue growth in 3D scaffolds has yet to be explored. We find that the Porous-Fisher model is able to capture features relating to the cell density and tissue coverage, but is not able to capture geometric features relating to the circularity of the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests several areas for model refinement, and provides guidance for future experimental work that explores tissue growth in 3D printed scaffolds. Author Summary Advances in 3D printing technology have led to cell culture experiments that realistically capture natural biological environments. Despite the necessity of quantifying cell behaviour with parameters that can be compared between experiments, many existing mathematical models of tissue growth in these experiments neglect information relating to population size. We consider tissue growth by cells on 3D printed scaffolds that comprise square pores of various sizes in this work. We apply a relatively simple mathematical model based on the Porous-Fisher reaction-diffusion equation to interpret highly detailed measurements relating to both the cell density and the quantity of tissue deposited. We analyse the efficacy of such a model in capturing cell behaviour seen in the experiments and quantify cell behaviour in terms of parameters that carry a biologically meaningful interpretation. Our analysis identifies important areas for model refinement and provides guidance for future data-collection and experimentation that explores tissue growth in 3D printed scaffolds.
12

Detection of clustered anomalies in single-voxel morphometry as a rapid automated method for identifying intracranial aneurysms

Mark Allenby et al.Jul 24, 2020
Abstract Unruptured intracranial aneurysms (UIAs) are prevalent neurovascular anomalies which, in rare circumstances, rupture to create a catastrophic subarachnoid haemorrhage. Although surgical management can reduce rupture risk, the majority of IAs exist undiscovered until rupture. Current computer-aided UIA diagnoses sensitively detect and measure UIAs within cranial angiograms, but remain limited to low specificities whose output requires considerable neuroradiologist interpretation not amenable to broad screening efforts. To address these limitations, we propose an analysis which interprets single-voxel morphometry of segmented neurovasculature to identify UIAs. Once neurovascular anatomy of a specified resolution is segmented, interrelationships between voxel-specific morphometries are estimated and spatially-clustered outliers are identified as UIA candidates. Our automated solution detects UIAs within magnetic resonance angiograms (MRA) at unmatched 86% specificity and 81% sensitivity using 3 minutes on a conventional laptop. Our approach does not rely on interpatient comparisons or training datasets which could be difficult to amass and process for rare incidentally discovered UIAs within large MRA files, and in doing so, is versatile to user-defined segmentation quality, to detection sensitivity, and across a range of imaging resolutions and modalities. We propose this method as a unique tool to aid UIA screening, characterisation of abnormal vasculature in at-risk patients, morphometry-based rupture risk prediction, and identification of other vascular abnormalities. Graphical Abstract Highlights Rapid and automated detection of unruptured intracranial aneurysms (UIAs) in MRAs Highly specific, sensitive UIA detection to reduce radiologist input for screening Detection is versatile to image resolution, modality and has tuneable mm sensitivity
66

Whole transcriptome profiling of placental pathobiology in SARS-CoV-2 pregnancies identifies a preeclampsia-like gene signature

Nataly Stylianou et al.Jan 21, 2023
Abstract In recent years, pregnant people infected with the SARS-CoV-2 virus have shown a higher incidence of “preeclampsia-like syndrome”. Preeclampsia is a systematic syndrome that affects 5-8 % of pregnant people worldwide and is the leading cause of maternal mortality and morbidity. It is unclear what causes preeclampsia, and is characterised by placental dysfunction, leading to poor placental perfusion, maternal hypertension, proteinuria, thrombocytopenia, or neurological disturbances. In this study, we used whole-transcriptome, digital spatial profiling of placental tissues to analyse the expression of genes at the cellular level between placentae from pregnant participants who contracted SARS-CoV-2 in the third trimester of their pregnancy and those prior to the start of the pandemic. Our focused analysis of the trophoblast and villous core stromal cell populations revealed tissue-specific pathways enriched in the SARS-CoV-2 placentae that align with a pre-eclampsia signature. Most notably, we found enrichment of pathways involved in vascular tension, blood pressure, inflammation, and oxidative stress. This study illustrates how spatially resolved transcriptomic analysis of placental tissue can aid in understanding the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy that are thought to induce “preeclampsia-like syndrome”. Moreover, our study highlights the benefits of using digital spatial profiling to map the crosstalk between trophoblast and villous core stromal cells linked to pathways involved in “preeclampsia-like syndrome” presenting in pregnant people with SARS-CoV-2.
1

Fluid-Structure Interactions of Peripheral Arteries Using a Coupled in silico and in vitro Approach

S. Schoenborn et al.Apr 17, 2023
Vascular compliance is considered both a cause and a consequence of cardiovascular disease and a significant factor in the mid- and long-term patency of vascular grafts. However, the biomechanical effects of localised changes in compliance, such as during plaque development or after bypass grafting and stenting, cannot be satisfactorily studied with the available medical imaging technologies or surgical simulation materials. To address this unmet need, we developed a coupled silico-vitro platform which allows for the validation of numerical fluid-structure interaction (FSI) results as a numerical model and physical prototype. This numerical one-way and two-way FSI study is based on a three-dimensional computer model of an idealised femoral artery which is validated against patient measurements derived from the literature. The numerical results are then compared with experimental values collected from compliant arterial phantoms. Phantoms within a compliance range of 1.4 - 68.0%/100mmHg were fabricated via additive manufacturing and silicone casting, then mechanically characterised via ring tensile testing and optical analysis under direct pressurisation with differences in measured compliance ranging between 10 - 20% for the two methods. One-way FSI coupling underestimated arterial wall compliance by up to 14.71% compared to two-way FSI modelling. Overall, Smooth-On Solaris matched the compliance range of the numerical and in vivo patient models most closely out of the tested silicone materials. Our approach is promising for vascular applications where mechanical compliance is especially important, such as the study of diseases which commonly affect arterial wall stiffness, such as atherosclerosis, and the model-based design, surgical training, and optimisation of vascular prostheses.
1

Advancing scaffold biomimicry: engineering mechanics in microfiber scaffolds with independently controlled architecture using melt electrowriting

Bríd Devlin et al.May 30, 2023
Abstract Melt electrowriting (MEW) is an additive manufacturing technique characterized by its ability to fabricate micronscale fibers from molten polymers into highly controlled 3D microfiber scaffolds. This emerging technique is gaining traction in tissue engineering and biofabrication research, however limitations in the ability to develop advanced coding to program MEW printers to fabricate scaffolds with complex fiber architectures has inhibited the development of structures with tunable and biomimetic mechanical properties. This study reports a series of non-straight scaffold architectures with combinations of independently controlled X & Y fiber spacing, corrections for MEW jet lag , and characterizations of their influences on scaffold mechanics. Polycaprolactone scaffolds with an elastic modulus ranging from 0.3 to 7.3 MPa were fabricated utilizing scaffolds manufactured from 5 layers of 55 μm fibers. The inclusion of scaffold design corrections in the gcode to compensate for decreasing deposition accuracy with increasing layer height enabled us to correct for discontinuous stress-strain mechanics and improved scaffold fabrication reproducibility. This study provides a comparison between a series of highly reproducible MEW scaffold architectures with non-straight fibers compared to the common crosshatch design to inform the development of more biomimetic scaffolds applicable to a variety of clinical applications. It further illustrates the significant effect toolpath correction has on reducing poor stress-strain mechanics, therefore improving the control, reproducibility, and biomimetic capacity of the MEW technique.
0

Time-of-Flight MRA of Intracranial Aneurysms with Interval Surveillance, Clinical Segmentation and Annotations

Chloe Nys et al.May 30, 2024
Intracranial aneurysms (IAs) are present in 2-6% of the global population and can be catastrophic upon rupture with a mortality rate of 30-50%. IAs are commonly detected through time-of-flight magnetic resonance angiography (TOF-MRA), however, this data is rarely available for research and training purposes. The provision of imaging resources such as TOF-MRA images is imperative to develop new strategies for IA detection, rupture prediction, and surgical training. To support efforts in addressing data availability bottlenecks, we provide an open-access TOF-MRA dataset comprising 63 patients, of which 24 underwent interval surveillance imaging by TOF-MRA. Patient scans were evaluated by a neuroradiologist, providing aneurysm and vessel segmentations, clinical annotations, 3D models, in addition to 3D Slicer software environments containing all this data for each patient. This dataset is the first to provide interval surveillance imaging for supporting the understanding of IA growth and stability. This dataset will support computational and experimental research into IA dynamics and assist surgical and radiology training in IA treatment.
0

Cell proliferation and migration explain pore bridging dynamics in 3D printed scaffolds of different pore size

Pascal Buenzli et al.Mar 13, 2020
Tissue growth in bioscaffolds can be influenced significantly by pore geometry, but how this geometric dependence emerges from dynamic cellular processes such as cell proliferation and cell migration remains poorly understood. Here we investigate the influence of pore size on the time required to bridge pores in a 3D printed scaffold by analysing experiments with a mathematical model. Experimentally, the new tissue infills the pore continually from the pore perimeter under strong curvature control, which leads to rounding off of the initial pore shape. Despite the varied shapes assumed by the tissue during this evolution, we find that time to bridge the pore simply increases linearly with the overall pore size. To disentangle the biological influence of cell behaviour and the mechanistic influence of geometry in this experimental observation, we propose a simple reaction--diffusion model of tissue growth based on Porous-Fisher invasion of cells into the pores. First, this model provides a good qualitative representation of the evolution of the tissue; new cellular tissue in the model grows at a rate that depends on the local curvature of the tissue substrate. Second, the model suggests that a linear dependence of bridging time with pore size arises due to geometric reasons alone, not to differences in cell behaviours across pores of different sizes. Our analysis therefore suggests that tissue growth dynamics in these experimental constructs is dominated by mechanistic cell proliferation and cell diffusion processes. The rates of these processes are unaffected by pore geometry, and can be predicted by simple reaction--diffusion models of cells that have robust, consistent behaviours.